
kgdb HOWTO

Shakthi Kannan, shaks_wants_no_spam_at_shakthimaan_dot_com

January 5 2007

Revision: 1.2

mailto:shaks_wants_no_spam_at_shakthimaan_dot_com


Abstract

This HOWTO describes the steps followed on setting up a kgdb environment with two
machines, and also on how to debug a driver module. Two x86 PCs are used. The testing
machine already has a GNU/Linux distribution installed with lilo/grub bootloader. They
are connected to a LAN, and communicate with each other using a NULL modem
cable. The Linux-2.4.23 kernel is used. This document is released under the GNU
Free Documentation License.



1 kernel debugging HOWTO

1.1 Download the sources

The sources need to be downloaded to the development machine. The Linux-2.4.23 kernel
sources are downloaded from kernel.org to say, /home/foo:
http :// www.kernel.org/pub/linux/kernel/v2.4/

The kgdb 1.9 patch for the 2.4.23 Linux kernel is downloaded (to say, /home/foo) from:
http :// kgdb.linsyssoft.com/downloads.htm

The gdbmod 1.9 version for module debugging is downloaded from:
http :// kgdb.linsyssoft.com/downloads.htm

Install the gdb that comes with your distribution to use it for kernel debugging. gdbmod
version of gdb is required to debug modules that are loaded dynamically on to the testing
machine.

1.2 Apply the patch

Extract the kernel sources:
cd /home/foo
tar xjvf linux -2.4.23. tar.bz2

Change into the linux-2.4.23 directory and apply the patch:
cd linux -2.4.23
patch -p1 < /home/foo/linux -2.4.23 -kgdb -1.9. patch

The patch will enable the -g option in the Makefile for gcc to compile with debug symbols.

1.3 Compile the kernel

Compile the kernel:
make dep
make menuconfig

Enable the following options for KGDB:
CONFIG_KGDB
CONFIG_KGDB_THREAD
CONFIG_GDB_CONSOLE

make dep
make bzImage

3



1.4 Setup the testing machine

Transfer the compiled bzImage and System.map to /boot on the testing machine. Since,
I have the two machines connected to the LAN, I use:

cd /home/foo/linux -2.4.23
scp System.map root@ <ip-address >:/ boot/System -map -2.4.23
scp arch/i386/boot/bzImage root@ <ip -address >:/ boot/vmlinuz -2.4.23 -

kgdb

Replace <ip-address> with the IP address of the testing machine.

Update the grub bootloader on the testing machine with the following:

title Debian GNU/Linux , kernel -2.4.23 - kgdb
root (hd0 ,1)
kernel /boot/vmlinuz -2.4.23 - kgdb ro root=/dev/hdc2 gdb gdbbaud =115200
savedefault
boot

Replace hdXY entries appropriately as on your x86 testing machine.

Connect a NULL modem cable between the testing machine and the development machine.
My testing machine has a serial port, while my development machine is a laptop, IBM
T41, without any serial port. So, I use a USB-to-serial converter and use the pl2303 and
usbserial drivers on the development machine. The device file is /dev/ttyUSB0 as can
be seen in the "/bin/dmesg" output.

1.5 Starting the communication

Reboot the testing machine and choose the new kgdb-patched kernel. It will boot-up
and halt at:

Waiting for connection from remote gdb ...

Open a terminal in the development machine, su to root, and set the line speeds:

su -
Password: <enter -root -password >
stty ispeed 115200 ospeed 115200 < /dev/ttyUSB0

Since my USB-to-serial is connected to /dev/ttyUSB0, I use this device file. If you have
a serial port, it will be /dev/ttyS0 or /dev/ttyS1. The exact name of the device file can
be checked from the output of "/bin/dmesg" after you plug in the USB-to-serial cable.

Now, start the gdb session in the development machine:

cd /home/foo/linux -2.4.23
gdb vmlinux

Set the target remote connection:

4



(gdb) target remote /dev/ttyUSB0

To continue the booting of the testing machine, type continue (or c) in the gdb prompt:

(gdb) continue

You can now use the testing machine. If there is any crash, control will be transferred
to gdb. If you would like gdb to get control, you can hit Control+c in the gdb prompt.

You can use the gdb commands to step through or debug the kernel.

2 module debugging HOWTO

The gdbmod version of gdb needs to be used for debugging modules that are loaded
dynamically on the testing machine. Follow steps 1-4 as mentioned above in the kernel
debugging HOWTO. Only the gdb version used differs here.

Compile the driver sources with the -g option to gcc.

Boot the testing machine with the kgdb-patched kernel. It will boot-up and halt at:

Waiting for connection from remote gdb ...

The gdbmod-1.9 executable can be placed in /usr/local/bin.

Open a terminal in the development machine, su to root, and set the line speeds:

su -
Password: <enter -root -password >
stty ispeed 115200 ospeed 115200 < /dev/ttyUSB0

Since my USB-to-serial is connected to /dev/ttyUSB0, I use this device file. If you have
a serial port, it will be /dev/ttyS0 or /dev/ttyS1. The exact name of the device file can
be checked from the output of "/bin/dmesg" after you plug in the USB-to-serial cable.

Enter into the Linux kernel sources on the development machine, and run gdbmod on
the vmlinux file:

gdbmod -1.9 vmlinux

Set the target remote connection:

(gdb) target remote /dev/ttyUSB0

You can set the source code search path for the driver sources using:

(gdb) set solib -search -path /path/to/driver/sources

Continue with the booting on the testing machine, type continue (or c) in the gdb prompt
on the development machine:

5



(gdb) continue

Transfer the driver module to the testing machine. Since, the systems are connected to
the LAN, I use scp:

scp /path/to/driver.o root@ <ip-address >:/ root

Replace <ip-address> with the IP address of the testing machine.

Now if you load the driver module on the testing machine, it will load. In case of any
crash, control will be transferred to gdb. If you would like gdb to get control, you can
hit Control+c in the gdb prompt.

Because gdb does not know of the module that is yet to be loaded, you can’t put a
breakpoint at module_init(). You need to put a breakpoint in the kernel, prior to
module init. So, place a breakpoint at module_event().

(gdb) br module_event

Load the module on the testing machine and it will break at module_event(). Now you
can place a breakpoint at your driver module_init (say hello_init), as the kernel now
knows about your loaded module:

(gdb) br hello_init

You can now step through hello_init of your module. Data Display Debugger (DDD)
can be used for both gdb and kgdb source-code stepping and debugging.

Have fun!

3 Bibliography

linsysoft . KGDB Documentation, For versions upto 2.2. LinSysSoft Technologies Pvt.
Ltd. 2005.

6


