
Introduction to GCC

Brian Gough Shakthi Kannan

Version 1.1 GNU FDL

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 1 / 59

Sections

Introduction

Static and shared libraries

Compilation options

C Language Standards

Warning options

Using the preprocessor

Compiling for debugging

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 2 / 59

Sections (. . .)

Compiling with optimization

Compiling a C++ program

Platform specific options

Compiler related tools

How the compiler works

Examining compiled files

Common error messages

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 3 / 59

Introduction

GNU Compiler Collection

A portable compiler

Output for many types of processors

Not only a native compiler

Multiple language frontends

Modular design

Support to add new architectures

GCC is Free Software

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 4 / 59

C and C++

Allow direct access to the computer’s memory

Useful for writing

Low-level systems software
High performance
Control over resource usage are critical

Care is required to ensure that memory is accessed correctly

Avoid corrupting data structures

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 5 / 59

Compiling a C program

/* main.c */

#include <stdio.h>

int
main (void)
{

printf ("Hello, world!\n");
return 0;

}

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 6 / 59

Compiling a C program (. . .)

$ gcc main.c -o main

To run the program, type the path name of the executable

$./main
Hello, world!

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 7 / 59

Compiling a C program (. . .)

Compile from single source file or from multiple files

May use system libraries and header files

If -o option is omitted, the output is written to default file ‘a.out’

GCC message format file

file:line-number:message

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 8 / 59

Compiling a C program (. . .)

To search for ‘FILE.h’ in current directory

#include "FILE.h"

To search for ‘FILE.h’ in system header file directories

#include <FILE.h>

With independent source files, only recompile modified files

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 9 / 59

Compiling a C program (. . .)

First stage: compile an “object file” (.o) without an executable

/* hello.c */

#include <stdio.h>
#include "hello.h"

void
hello (const char *name)
{

printf ("Hello, %s!\n", name);
}

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 10 / 59

Compiling a C program (. . .)

/* hello.h */

void hello (const char *name);

$ gcc -Wall -c hello.c

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 11 / 59

Compiling a C program (. . .)

Second stage: object files linked to create an executable

/* main.c */

#include "hello.h"

int
main (void)
{

hello ("Everyone");
return 0;

}

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 12 / 59

Compiling a C program (. . .)

$ gcc -Wall -c main.c

Linker (ld) combines all the object files together

$ gcc main.o hello.o -o hello

$./hello
Hello, everyone!

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 13 / 59

Compiling a C program (. . .)

GNU Make to automate recompilation of modified files in a project

Implicit rules are defined in terms of make variables

CC = gcc
CFLAGS = -Wall

For C++, the equivalent make variables are:

CXX
CXXFLAGS
CPPFLAGS for preprocessor options

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 14 / 59

Compiling a C program (. . .)

Makefile
CC=gcc
CFLAGS=-Wall
main: main.o hello.o

clean:
rm -f main main.o hello.o

$ make
gcc -Wall -c -o main.o main.c
gcc -Wall -c -o hello.o hello.c
gcc main.o hello.o -o main

$./main
Hello, world!

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 15 / 59

Libraries

Static libraries

special “archive files”
have extension ’.a’
created from object files using GNU archiver ‘ar’
used by linker to resolve references to functions at compile time

Shared libraries

have extension ’.so’
preferred over static libraries

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 16 / 59

Libraries (. . .)

GNU ar to create a static library:

$ gcc -Wall -c -o hello.o hello.c
$ ar cr libhello.a hello.o

The ‘cr’ stands for “create and replace”

The “table of contents” option ‘t’ can list the object files in an
existing library

$ ar t libhello.a
hello_fn.o
bye_fn.o

$ gcc main.c /tmp/tmp/test/libhello.a -o main
$./main
Hello, everyone!

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 17 / 59

Libraries (. . .)

/* calc.c */

#include <math.h>
#include <stdio.h>

int
main (void)
{

double x = sqrt (2.0);
printf ("The square root of 2.0 is %f\n", x);
return 0;

}

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 18 / 59

Libraries (. . .)

$ gcc -Wall calc.c -o calc
/tmp/ccbR6Ojm.o: In function ‘main’:
/tmp/ccbR6Ojm.o(.text+0x19): undefined reference
to ‘sqrt’

‘/tmp/ccbR60jm.o’ is a temporary object file created for linking

A library should appear after any source files or object files

$ gcc -Wall calc.c /usr/lib/libm.a -o calc

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 19 / 59

Libraries (. . .)

-lNAME will link object files with library file ‘libNAME.a’ in the
standard library directories

$ gcc -Wall calc.c -lm -o calc

If library lglpk uses and depends on lm library, it must appear before
lm

$ gcc -Wall data.c -lglpk -lm

Not all compilers search all libraries, so order libraries from left to right

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 20 / 59

Libraries (. . .)

$ gcc -Wall -fPIC -c hello.c
$ gcc -shared -Wl,-soname,libhello.so.1 -o \
libhello.so.1.0 hello.o

$ ln -sf libhello.so.1.0 libhello.so
$ ln -sf libhello.so.1.0 libhello.so.1
$ gcc -Wall -I/tmp/tmp/test -L/tmp/tmp/test main.c \
-lhello -o main

$./main
./main: error while loading shared libraries: \

libhello.so.1: cannot open shared object file: \
No such file or directory

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 21 / 59

Libraries (. . .)

$ export LD_LIBRARY_PATH=/tmp/tmp/test:$LD_LIBRARY_PATH
$ gcc -Wall -I/tmp/tmp/test -L/tmp/tmp/test main.c \
-lhello -o main

$./main
Hello, everyone!

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 22 / 59

Compilation Options

A common problem when using library header files

FILE.H: No such file or directory

/usr/bin/ld: cannot find LIBRARY

Default directory search locations for header files

/usr/local/include/
/usr/include/

for libraries

/usr/local/lib/
/usr/lib/

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 23 / 59

Compilation Options (. . .)

“include path” - list of directories for header files

Header file in /usr/local/include takes precedence over /usr/include

-I to add new directory to search path

“library search path” or “link path” - list of directories for libraries

Library in /usr/local/lib takes precedence over /usr/lib

-L to add new directory to library search path

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 24 / 59

Compilation Options (. . .)

Never use absolute paths of header files in #include statements

Environment variables in shell, or .bash profile in GNU bash for search
paths

Additional directories can be added to include path using environment
variable:

C INCLUDE PATH (for C header files)
CPLUS INCLUDE PATH (for C++ header files).

Several search directories can be a colon separated list

DIR1:DIR2:DIR3:...

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 25 / 59

Compilation Options (. . .)

libgdbm.so shared object file is prefered over libgdbm.a static library

Set load path through environment variable LD LIBRARY PATH

$ LD_LIBRARY_PATH=/opt/gdbm-1.8.3/lib
$ export LD_LIBRARY_PATH

LD LIBRARY PATH can be set in

/etc/profile
/etc/ld.so.conf

-static with gcc to avoid the use of shared libraries

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 26 / 59

C Language Standards

The variable name asm is valid under the ANSI/ISO standard

/* ansi.c */

#include <stdio.h>

int
main (void)
{
const char asm[] = "6502";
printf ("the string asm is ’%s’\n", asm);
return 0;

}

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 27 / 59

C Language Standards (. . .)

asm is a GNU C keyword extension for native assembly instructions to
be used in C functions

$ gcc -Wall ansi.c
ansi.c: In function ‘main’:
ansi.c:6:14: error: expected identifier or ‘(’ before ‘asm’
ansi.c:7:39: error: expected expression before ‘asm’

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 28 / 59

C Language Standards (. . .)

$ gcc -Wall -ansi ansi.c

Non-standard keywords and macros defined by GNU C extensions:

asm
inline
typeof
unix
vax

Use macro ‘ GNU SOURCE’ to enable extensions in the GNU C
library

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 29 / 59

C Language Standards (. . .)

Other Macro extensions:

POSIX extensions (‘ POSIX C SOURCE’)
BSD extensions (‘ BSD SOURCE’)
SVID extensions (‘ SVID SOURCE’)
XOPEN extensions (‘ XOPEN SOURCE’)

-pedantic to write portable programs which follow ANSI/ISO standard

-std option for a specific language standard

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 30 / 59

Warning Options

-Wcomment (included in -Wall) warns about nested comments

Safe way to “comment out” section of code containing comments

#if 0

#endif

-Wformat (included in -Wall) incorrect use of format strings

-Wunused (included in -Wall) unused variables

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 31 / 59

Warning Options (. . .)

-Wimplicit (included in -Wall) functions used without being declared

-Wreturn-type (included in -Wall)

functions defined without return type but not declared void
Empty return statements in functions that are not declared void

-W common programming errors

functions which can return without a value
comparisons between signed and unsigned values

The options -W and -Wall are normally used together

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 32 / 59

Warning Options (. . .)

-Wconversion implicit type conversions

-Wshadow redeclaration of a variable name in a scope where it has
already been declared

-Wcast-qual pointers that are cast to remove a type qualifier, such as
const

-Wwrite-strings gives all string constants a const qualifier

-Wtraditional warns code interpreted differently by an ANSI/ISO
compiler and a “traditional” pre-ANSI compiler

-Werror changes the default behavior by converting warnings into
errors, stopping the compilation whenever a warning occurs

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 33 / 59

Using the preprocessor

GNU C preprocessor cpp expands macros in source files before
compilation

$ cpp hello.c > hello.i

-DNAME defines a preprocessor macro ‘NAME’ from the command
line

Preprocessor is integrated into compiler, although a separate cpp
command is also provided

Macros are generally undefined

Reserved macros defined by the compiler begin with
double-underscore prefix

Complete set of predefined macros

$ cpp -dM /dev/null

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 34 / 59

Using the preprocessor (. . .)

Non-standard macros can be disabled with -ansi

Surround macros by parentheses whenever they are part of an
expression

When a macro is defined with -D alone, gcc uses a default value of 1

-E option with gcc runs the preprocessor, displays the output without
compiling the source code

-save-temps option saves preprocessor output, .s assembly files, and .o
object files

$ gcc -c -save-temps hello.c

hello.i has preprocessed output

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 35 / 59

Compiling for debugging

-g to store additional debugging information in object files and
executables

ulimit -c controls the maximum size of core files

To allow core files of any size to be written:

$ ulimit -c unlimited

Note that this setting only applies to the current shell.

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 36 / 59

Compiling for debugging (. . .)

To load core files into GNU Debugger gdb

$ gdb EXECUTABLE-FILE CORE-FILE

$ gdb a.out core

break function-name to set a breakpoint on a specific function:

$ gdb a.out
(gdb) break main
Breakpoint 1 at 0x80483c6: file null.c, line 6

To move forward without tracing calls, use the command next

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 37 / 59

Compiling for debugging (. . .)

set variable to change the value of variable in a running program:

(gdb) set variable p = malloc(sizeof(int))

finish continues execution up to the end of the current function

continue runs until the program exits (or hits the next breakpoint)

To debug a program interactively use tools like Emacs GDB mode
(M-x gdb), DDD or Insight

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 38 / 59

Compiling for debugging (. . .)

It is not possible to set a breakpoint on an inlined function

$ gcc -v --help

Version number:

MAJOR-VERSION.MINOR-VERSION or
MAJOR-VERSION.MINOR-VERSION.MICRO-VERSION

-v lists commands used to compile and link a program

$ gcc -v -Wall hello.c
Using built-in specs.
COLLECT_GCC=/usr/bin/gcc
...

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 39 / 59

Compiling with optimization

Many source-level optimization techniques

Common subexpression elimination (CSE)

increases the speed
reduces code size

x = cos(v)*(1+sin(u/2)) + sin(w)*(1-sin(u/2))

or

t = sin(u/2)
x = cos(v)*(1+t) + sin(w)*(1-t)

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 40 / 59

Compiling with optimization (. . .)

inline keyword for a specific function should be inlined

Loop unrolling

increases speed of executable
increases code size

-OLEVEL optimization level

LEVEL 0-3

-O0 or no -O

default
no optimization level
debugging

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 41 / 59

Compiling with optimization (. . .)

-O1 or -O

common forms of optimization
executables are smaller and faster

-O2

include instruction scheduling
longer to compile programs
require more memory than with -O1
best choice for development and deployment

-O3

more expensive optimizations

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 42 / 59

Compiling with optimization (. . .)

user time gives actual CPU time spent running the process

real and sys provide the total real time for the process to run

time where other processes used the CPU
time spent waiting for OS calls

Use optimization with debugging option ‘-g’ is recommended

development
deb

-Wuninitialized (included in -Wall) warns uninitialized variables

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 43 / 59

Compiling a C++ program

The GNU C++ compiler is a true C++ compiler

C++ source code file extensions:

.cc

.cpp

.cxx

.C

-ansi option requests compliance with the C++ standard

Linking C++ object files with gcc produces undefined references
errors

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 44 / 59

Compiling a C++ program (. . .)

-Wall and -W include extra warnings specific to C++

-fno-default-inline disables default inlining of member functions

-Weffc++ warns about C++ code which breaks some of the
programming guidelines given in the books Effective C++ and More
Effective C++ by Scott Meyers.

-Wold-style-cast option highlights any uses of C-style casts in C++
programs

Use “include guards” to ensure header definitions are parsed only once

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 45 / 59

Platform specific options

-m for platform-specific options for different types of CPUs

-march=CPU will be faster but will not run on other processors

-mcpu=CPU is tuned for a specific processor

-mmmx, -msse, -msse2, -msse3, and -m3dnow enable the use of extra
instructions

-msse2 -mfpmath=sse to use SSE extensions for floating-point
arithmetic

-m32 allows 32-bit code to be generated

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 46 / 59

Platform specific options (. . .)

The possible values of CPU:

power
power2
powerpc
powerpc64
common for POWER/PowerPC

-mieee to enable full support for IEEE arithmetic

The IEEE-754 standard defines the bit-level behaviour of
floating-point arithmetic operations

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 47 / 59

Platform specific options (. . .)

-fsigned-char or -funsigned-char to set the default type of char

-fsigned-bitfields and -funsigned-bitfields control definitions of bitfields
in structs

Functions getc, fgetc and getchar have a return type of int, not char

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 48 / 59

Compiler related tools

-pg to be used for profiling

$ gcc -Wall -c -pg collatz.c
$ gcc -Wall -pg collatz.o

-pg should be used

with each source file
during linking

gmon.out contains profiling data in the current directory

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 49 / 59

Compiler related tools (. . .)

To enable coverage testing

$ gcc -Wall -fprofile-arcs -ftest-coverage cov.c

Data written to several files

.bb

.bbg

.da

Lines which were not executed are marked with hashes ‘######’

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 50 / 59

How the compiler works

Preprocessed files are given the file extension:

.i for C programs

.ii for C++ programs

$ cpp hello.c > hello.i

-S command-line option converts C source code into assembly
without creating an object file

$ gcc -Wall -S hello.i

Assembler converts assembly language into machine code and
generates an object file

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 51 / 59

Examining compiled files

file command determines file type

$ file a.out
a.out: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses
shared libs), not stripped

ELF = Executable and Linking Format

COFF = Common Object File Format

$ file hello.o
hello.o: ELF 64-bit LSB relocatable, x86-64,
version 1 (SYSV), not stripped

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 52 / 59

Examining compiled files (. . .)

nm command lists symbols from object files

$ nm hello.o
0000000000000000 T hello

U printf

ldd prints shared library dependencies

$ ldd hello
linux-vdso.so.1 => (0x00007fff73dff000)
libc.so.6 => /lib64/libc.so.6 (0x00000032a3a00000)
/lib64/ld-linux-x86-64.so.2 (0x00000032a3600000)

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 53 / 59

Common error messages

No such file or directory

macro or #include recursion too deep or #include nested too deeply

two or more files trying to include each other

invalid preprocessing directive #. . .

warning: This file includes at least one deprecated or antiquated
header

C++ programs which include old-style library header files

variable undeclared (first use in this function)

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 54 / 59

Common error messages (. . .)

parser error before ‘. . . ’ or syntax error

parse error at end of input

compiler encounters end of a file unexpectedly

warning: implicit declaration of function ‘. . . ’

function used without a prototype being declared

unterminated string or character constant

character constant too long

single quotes are used to enclose more than one character

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 55 / 59

Common error messages (. . .)

warning: initalization makes integer from pointer without a cast

indicates a misuse of a pointer (NULL, for example) in an integer
context

dereferencing pointer to incomplete type

access elements of struct before struct declaration

warning: suggest parentheses around assignment used as truth value

use of assignment operator =’ instead of the comparison
operator==’

warning: control reaches end of non-void function

missing return value for all cases or not well-defined

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 56 / 59

Common error messages (. . .)

warning: assignment of read-only location warning: cast discards
qualifiers from pointer target type warning: assignment discards
qualifiers . . . warning: initialization discards qualifiers . . . warning:
return discards qualifiers . . .

pointer is used incorrectly, violating a type qualifier, such as /const/

initializer element is not a constant

global variables initialized with non-constant value

GCC cannot recognize the file type

undefined reference to ‘foo’ collect2: ld returned 1 exit status

function or variable not found in any object files or libraries used with
linker

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 57 / 59

Common error messages (. . .)

error while loading shared libraries: cannot open shared object file:
No such file or directory

Segmentation fault Bus error These runtime messages indicate a
memory access error. Common causes include:

dereferencing a null pointer or uninitialized pointer
out-of-bounds array access
incorrect use of malloc, free, and related functions

floating point exception

is caused by an arithmetic exception:
division by zero
overflow
underflow
invalid operation (taking square root of -1)

Illegal instruction

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 58 / 59

References

An Introduction to GCC.
http://www.network-theory.co.uk/gcc/intro/

GNU Compiler Collection. http://gcc.gnu.org/

Brian Gough, Shakthi Kannan () Introduction to GCC Version 1.1 GNU FDL 59 / 59

