
“The Danger
of

Software Patents”

Richard Stallman's

Copyright, Patents, Trademarks

Origins are independent.

Public policy issues raised are different.

"Intellectual Property" is biased.

“Intellectual Property” leads to
 simplistic conclusions.

Differences between copyrights and
patents

- Copyright deals with details of work, not ideas
- Patents cover ideas and use of ideas

- Copyrights happen automatically
- Patents issued by a patent office

- Patents cost lot of money
- Copyrights are owned by authors

- Copyrights last long, for example, 150 years
- Patents last 20 years

- Copyrights cover copying
- Patents are a monopoly on the use of an idea

Drawbacks of Patents

Patents publishing time is around 18 months.

Pending patents are kept secret.

Your program might be released before a patent on
the program is published.

Threat of getting sued.

Example: LZW compression algorithm in compress
command, 1984; patent released in 1985.

Drawbacks of Patents (II)

Thousands and thousands of patents.

Patents are ambigously written.

Example:
Patent on "Natural order recalculation" in
"spreadsheets" in 1963;

uses the "toplogical sort algorithm"; none of the
above keywords are mentioned in the patent;

only describes a method of "compiling formulas into
object code".

Drawbacks of Patents (III)

Patents are hard to understand.

Australian government made a study on the patent
system in 1980.

Conclusion: "aside from international pressure,
there was no reason to have a patent system".

One of the engineers said: "I can't recognize my
own invents in patents".

Drawbacks of Patents (IV)

Example: Around 1990, Paul Heckel sued Apple
claiming that hypercard infringed his patents;

Lawyer told him that he could read the
patents as coverying hypercard;

RMS gave a speech at Stanford and quoted
this example. Paul Heckel, who was in the audience
replied, "That's not true, I just didn't understand
the extent of my protection!". RMS, replied saying,
"Yes, that's what I said".

Business perspective

Three ways of handling patents:

Avoiding patents

Licensing the patent

Overturning the patent in court

Avoiding patents

Easy or hard depending on the idea.

If a feature is patented, you can avoid
implementing the feature.

Example: XyWrite word processor provided a
downgrade for users to remove pre-defined
abbreviation feature.

Ideas may be too broad or on an entire field.

Example: Public Key Encryption was patented in US;
expired in 1997.

Avoiding patents: Examples

Optimized version of FFT (twice as fast as ordinary
FFT); you can use ordinary FFT instead.

gzip compression algorithm was not patented; now
de-facto standard for data compression.

Pantone color matching not in GIMP, available in
Adobe Photoshop; feature patented by Pantone.

Avoiding patents: Patented twice

Two patents covered LZW compression algorithm.

Patent office doesn't have the time.

US patent office spends on an average 17 hours per
patent.

Software is pure mathematical and a single
calculation can be described in many ways.

Avoiding patents:
Patents versus Standards

Company or consortium can make a format/protocol a
de-facto standard.

Standards exist that might have patents on them.

Standards have to be free for anyone to implement.

Example: WWW consortium proposed to start adopting
standards covered by patents.

Community objected and they reverted themselves.

Some standards committees refuse to issue a
standard which they KNOW is patented. However, it
could be covered by a patent they don't know about.

The standards committee adopts the standard,
thinking it is not patented--and afterwards, some
patent holder comes out of the woodwork and attacks
the users. That is what happened with JPG.

Avoiding patents:
Patents versus Standards (II)

Licensing the patent

Patent holder does not need to offer a license.

Example: A family business using gambling
machinery for casinos that used computers;

The patent covered "having a number of computers on
a network for playing games such that each computer
supported more than one game and allowed you to
play more than one game at a time";

Patent holder didn't offer license and the business
had to be shutdown.

Licensing the patent

Licenses are charged.

Natural order recalculation patent demanded 5% of
gross sales of every spreadsheet in the US.

Question arises if you have to pay for 20 different
patents.

2-3 patents with 5% for licensing are sufficient to
make any business unfeasable.

Licensing patents:
Suitable for big players

Licensing patents is a very good solution for
multinational mega-corporations because they own
lots of patents.

Big companies cross-license with each other.

Example: IBM article in Think Magazine (No. 5,
1990) which said they have two benefits from their
9000 US patents:

a. royalty
b. getting access to patents of others

The benefit of the latter being 10 times greater
than the former.

This phenomenon of cross-licensing refutes the
common myth that patents "protect" the "small
inventor".

Big corporations benefit from them and hence push
for software patents.

Licensing patents:
Suitable for big players (II)

Overturning a patent

Patents are given to the obvious.

Costs lot of money to fight in the court.

Example: In one patent case, Qualcomm invested 13
million US dollars of which most went to lawyers.

Patents are there in other fields?
Why not software?

It is like saying "Some people get cancer. Why
should you be exempt?"

Patents relate differently to different fields.

In pharmaceuticals, a given chemical formula would
be patented, so, there is one patent per product
and it covers the idea of the product.

Patents are there in other fields?
Why not software? (II)

Software packages are big, complex, and cover
thousands of ideas. So, there are thousands of
points of vulnerability in your program.

Software patents thus tend to obstruct the
development of software.

Software patents do not allow invention or
innovation.

Why software patents cannot be
applied to software

Software consists of ideal mathematical objects and
can be implemented in many ways.

Other fields deal with physical matter.

Software doesn't have to worry about the physical
boundary limitations.

Software systems are huge and far complex than
physical systems.

Analogy : Symphonies

A symphony is long and has many notes in it, and
uses many musical ideas.

One may have a lot of new musical ideas but he/she
has to use a lot of existing musical ideas in order
to make recognizable music.

Analogy : Symphonies (II)

Music, like software (and writing and in fact all
other fields of human endeavour) builds
continuously on its own past. You cannot write
music or software entirely out of new ideas.

Nobody is so brilliant that he can re-invent music
and make something that people would want to listen
to; and the same is applicable to software.

Publish ideas

In earlier days, people published ideas and got
credit for them, but often kept the code a secret
(unfortunately).

Today, people patent the ideas and still keep the
code secret.

Patents have not encouraged disclosure.

Policies in countries

Totally remove the use of software patents.

Question the patents issued by the patent office.

All software developers are threatened by software
patents, and even software users.

WTO follows corporate regulated trade, as opposed
to free trade.

In Europe, software patents were blocked twice.

Links

http://www.researchinnovation.org

http://www.programming-freedom.org

http://www.ffii.org

http://www.gnu.org/philosophy/stallman-mec-india.html

http://swpat.ffii.org/

http://www.researchinnovation.org/
http://www.programming-freedom.org/
http://www.ffii.org/
http://www.gnu.org/philosophy/stallman-mec-india.html
http://swpat.ffii.org/

Thank
You

