
Mach 3 Kernel Interfaces

Open Software Foundation and Carnegie
Mellon University

Keith Loepere, Editor

S FO

NORMA-MK12: July 15, 1992

This book is in the Open Software Foundation Mach 3 series.

Books in the OSF Mach 3 series:

Mach 3 Kernel Principles

Mach 3 Kernel Interfaces

Mach 3 Server Writer’s Guide

Mach 3 Server Writer’s Interfaces

Revision History:

Revision 2 MK67: January 7, 1992 OSF / Mach release
Revision 2.2 NORMA-MK12: July 15, 1992

Change bars indicate changes since MK67.

Copyright© 1990 by the Open Software Foundation and Carnegie Mellon University.

All rights reserved.

This document is partially derived from earlier Mach documents written by Robert V.
Baron, Joseph S. Barrera, David Black, William Bolosky, Jonathan Chew, Richard P.
Draves, Alessandro Forin, David B. Golub, Richard F. Rashid, Mary R. Thompson, Ava-
dis Tevanian, Jr. and Michael W. Young.

Mach 3 Kernel Interfaces iii

Contents

CHAPTER 1 Introduction . 1
Interface Descriptions . 1
Interface Types. 2
Special Forms. 3
Parameter Types. 3

CHAPTER 2 IPC Interface . 5
mach_msg . 6
mach_msg_receive. 21
mach_msg_send. 22

CHAPTER 3 Port Manipulation Interface . 23
do_mach_notify_dead_name . 24
do_mach_notify_msg_accepted. 26
do_mach_notify_no_senders . 28
do_mach_notify_port_deleted . 30
do_mach_notify_port_destroyed 32
do_mach_notify_send_once . 34
mach_port_allocate . 35
mach_port_allocate_name . 37
mach_port_deallocate . 39
mach_port_destroy. 40
mach_port_extract_right . 42
mach_port_get_receive_status . 44
mach_port_get_refs . 45
mach_port_get_set_status . 47
mach_port_insert_right . 49
mach_port_mod_refs . 51
mach_port_move_member. 53
mach_port_names . 55
mach_port_rename. 57
mach_port_request_notification. 59
mach_port_set_mscount . 62
mach_port_set_qlimit . 63
mach_port_set_seqno. 65
mach_port_type . 66
mach_ports_lookup . 68
mach_ports_register. 69

iv Mach 3 Kernel Interfaces

mach_reply_port . 71

CHAPTER 4 Virtual Memory Interface . 73
vm_allocate . 74
vm_copy. 76
vm_deallocate . 78
vm_inherit . 80
vm_machine_attribute . 82
vm_map . 84
vm_protect . 88
vm_read . 90
vm_region . 92
vm_statistics. 94
vm_wire . 95
vm_write . 97

CHAPTER 5 External Memory Management Interface. 99
default_pager_info . 100
default_pager_object_create . 101
memory_object_change_attributes 103
memory_object_change_completed 105
memory_object_copy. 107
memory_object_create. 110
memory_object_data_error . 113
memory_object_data_initialize 115
memory_object_data_provided 117
memory_object_data_request 119
memory_object_data_return . 121
memory_object_data_supply . 123
memory_object_data_unavailable 126
memory_object_data_unlock. 128
memory_object_data_write . 130
memory_object_destroy. 132
memory_object_get_attributes. 133
memory_object_init . 135
memory_object_lock_completed. 137
memory_object_lock_request 139
memory_object_ready . 142
memory_object_set_attributes 144
memory_object_supply_completed 146
memory_object_terminate . 148

Mach 3 Kernel Interfaces v

vm_set_default_memory_manager 150

CHAPTER 6 Thread Interface . 151
catch_exception_raise . 152
evc_wait . 155
exception_raise . 157
mach_sample_thread . 159
mach_thread_self . 161
swtch . 162
swtch_pri . 163
thread_abort . 164
thread_create . 166
thread_depress_abort . 168
thread_get_special_port . 169
thread_get_state . 171
thread_info . 173
thread_max_priority. 175
thread_policy . 177
thread_priority . 179
thread_resume . 181
thread_set_special_port . 182
thread_set_state . 184
thread_suspend. 186
thread_switch . 187
thread_terminate . 189
thread_wire . 190

CHAPTER 7 Task Interface. 191
mach_sample_task . 192
mach_task_self. 194
task_create . 195
task_get_emulation_vector . 197
task_get_special_port. 198
task_info. 200
task_priority . 202
task_resume . 204
task_set_emulation. 205
task_set_emulation_vector. 206
task_set_special_port . 208
task_suspend . 210
task_terminate . 211

vi Mach 3 Kernel Interfaces

task_threads . 212

CHAPTER 8 Host Interface. 213
host_adjust_time . 214
host_get_boot_info . 215
host_get_time. 216
host_info . 217
host_kernel_version . 219
host_reboot. 220
host_set_time . 221
mach_host_self . 222

CHAPTER 9 Processor Interface . 223
host_processor_set_priv. 224
host_processor_sets . 225
host_processors . 227
processor_assign . 228
processor_control. 230
processor_exit . 232
processor_get_assignment . 234
processor_info . 235
processor_set_create . 237
processor_set_default. 239
processor_set_destroy . 240
processor_set_info . 241
processor_set_max_priority. 243
processor_set_policy_disable 245
processor_set_policy_enable . 247
processor_set_tasks . 248
processor_set_threads . 249
processor_start . 250
task_assign . 252
task_assign_default . 254
task_get_assignment . 255
thread_assign . 256
thread_assign_default . 257
thread_get_assignment. 258

CHAPTER 10 Device Interface . 259
device_close. 260
device_get_status . 261

Mach 3 Kernel Interfaces vii

device_map . 263
device_open . 265
device_read . 268
device_read_inband . 270
device_set_filter . 272
device_set_status . 276
device_write . 277
device_write_inband . 279

APPENDIX A MIG Server Routines. 281
device_reply_server . 282
exc_server . 284
memory_object_default_server 286
memory_object_server. 288
notify_server . 290
seqnos_memory_object_default_server. 292
seqnos_memory_object_server 294
seqnos_notify_server . 296

APPENDIX B Multicomputer Support . 299
norma_get_special_port. 300
norma_port_location_hint . 303
norma_set_special_port . 304
norma_task_create . 307
task_set_child_node. 309

APPENDIX C Intel 386 Support . 311
i386_get_ldt . 314
i386_io_port_add . 316
i386_io_port_list . 318
i386_io_port_remove. 320
i386_set_ldt . 321

APPENDIX D Data Structures . 323
host_basic_info . 324
host_load_info . 325
host_sched_info . 326
mach_msg_header . 327
mach_msg_type . 330
mach_msg_type_long . 333

viii Mach 3 Kernel Interfaces

mach_port_status . 335
mapped_time_value . 337
processor_basic_info . 338
processor_set_basic_info . 339
processor_set_sched_info . 340
task_basic_info . 341
task_thread_times_info . 342
thread_basic_info. 343
thread_sched_info . 345
time_value . 347
vm_statistics. 348

APPENDIX E Error Return Values . 351

APPENDIX F Index . 359

Mach 3 Kernel Interfaces 1

CHAPTER 1 Introduction

This book documents the various interfaces to the Mach 3 kernel. The text describes each
interface to the kernel in isolation. The relationship of interfaces to one another, and the
way that interfaces are combined to write user servers is the subject of a companion vol-
ume.

The organization of this book is such that it follows the organization of the kernel into its
major functional areas. Although the kernel interface is itself not object oriented, the divi-
sion of interfaces into areas is largely done according to the significant object utilized or
manipulated by the interfaces. Each such object receives its own chapter. Of course, the
assignment of interfaces into these chapters is a difficult and highly subjective process.
For example, an interface that returns the list of processor sets defined for a host can be
grouped with host related interfaces or processor set related interfaces. Each interface,
though, appears only once in this book.

Appendices give a description of the structures and fields used by these interfaces, a list
of possible error return values from the kernel and an alphabetical index of functions and
data structures.

Interface Descriptions

Each interface is listed separately, each starting on its own page. For each interface, some
or all of the following features are presented:

• The name of the interface

• A brief description

2 Mach 3 Kernel Interfaces

Introduction

• The pertinent library. All functions in this volume are contained in libmach_sa.a
(and, by implication, libmach.a) unless otherwise noted. Also listed is the header file
that provides the function prototype or defines the data structure (if not mach.h).

• A synopsis of the interface, in C form

• An extended description of the function performed by the call

• Any macro or special forms of the call

• A description of each parameter to the call

• Additional notes on the use of the interface

• Cautions relating to the interface use

• An explanation of the significant return values

• References to related interfaces

Interface Types

Most of the interfaces in this book are MIG generated interfaces. That is, they are stub
routines generated from MIG interface description files. Calling these interfaces will ac-
tually result in a Mach IPC message being sent to the port that is the first argument in the
call. This has two important effects.

• These calls may fail for various MIG or IPC related reasons. The list of error returns
for these calls should always be considered to also include the IPC related errors
(MACH_MSG_..., MACH_SEND_... and MACH_RCV_...) and the MIG related er-
rors (MIG_...).

• These calls only invoke their expected effect when the acting port is indeed a port of
the specified type. That is, if a call expects a port that names a task (a kernel task
port) and the port is instead a port managed by a task, the routine will still happily
generate the appropriate Mach message and send it to that task. What the target task
will do with the message is up to it. Note that it is this effect that allows the Net Mes-
sage server to work.

A few of these interfaces are actually system calls (traps). In general, the system calls
(with the obvious exception of the mach_msg call) work only on the current task or
thread. (Some functions are a hybrid; they first try the system call, and, failing that, they
try sending a Mach message. This is an optimization for some interfaces for which the
target is usually the invoking task or thread.) Any routine not documented as a system
call is a MIG stub routine.

Most of these interfaces are of the type Function. This means that there is actually a C
callable function (most likely in libmach.a) that has the calling sequence listed and that
when called invokes some kernel or kernel related service. If the interface is a system
trap instead of a message, it will be listed as a System Trap.

Some interfaces have the type Server Interface. Such a description applies to interfaces
that are called in server tasks on behalf of messages sent from the kernel. That is, it is as-
sumed that some task is listening (probably with mach_msg_server) on a port to which
the kernel is to send messages. A received message will be passed to a MIG generated

Mach 3 Kernel Interfaces 3

Special Forms

server routine (service_server) which will call an appropriate server target function. It is
these server target functions, one for each different message that the kernel generates,
that are listed as Server Interfaces. For any given kernel message, there are any number
of possible server interface calling sequences that can be generated, by permuting the or-
der of the data provided in the message, omitting some data elements or including or
omitting various header field elements (such as sequence numbers). In most cases, a sin-
gle server interface calling sequence has been chosen with a given MIG generated server
message de-multiplexing routine that calls these interfaces. In some cases, there are more
than one MIG generated server routines which call upon different server interfaces asso-
ciated with that MIG service routine. In any event, all Server Interfaces contain within
their documentation the name of the MIG generated server routine that invokes the inter-
face.

Special Forms

There are various special interface forms defined in this volume.

• The MACRO form specifies macros (typically defined in mach.h) that provide short-
hand equivalents for some variations of the longer function call.

• The SEQUENCE NUMBER form of a Server Interface defines an additional MIG
generated interface that supplies the sequence number from the message causing the
server interface to be invoked. The existence of such a form implies the existence of
an alternate MIG generated message de-multiplexing routine that invokes this special
interface form.

• The ASYNCHRONOUS form defines a MIG generated version of a Function that
allows the function to be invoked asynchronously. Such a version requires an addition-
al parameter to specify the reply port to which the reply is sent. The return value from
the asynchronous function is the return status from the mach_msg call sending the re-
quest, not the resulting status of the kernel operation. The asynchronous interface also
requires a matching Server Interface that defines the reply message containing data
that would have been output values from the normal function, as well as the resulting
status from the kernel operation.

Parameter Types

Each interface description supplies the C type of the various parameters. The parameter
descriptions then indicate whether these parameters are input (“in”), output (“out”) or
both (“in/out”). This information appears in square brackets before the parameter descrip-
tion. Additional information also appears within these brackets for special or non-obvi-
ous parameter conventions.

The most common notation is “scalar”, which means that the parameter somehow de-
rives from an int type. Note that port types are of this form.

If the notation says “structure”, the parameter is a direct structure type whose layout is
described in APPENDIX D.

4 Mach 3 Kernel Interfaces

Introduction

The notation “pointer to in array/structure/scalar” means that the caller supplies a pointer
to the data. Arrays always have this property following from C language rules. If not so
noted, input parameters are passed by value.

Output parameters are always passed by reference following C language rules. Hence the
notation “out array/structure/scalar” actually means that the caller must supply a pointer
to the storage to receive the output value. If a parameter is in/out, the notation “pointer to
in/out array/structure/scalar” will appear. Since the parameter is also an output parame-
ter, it must be passed by reference, hence it appears as a “pointer to in array/structure/sca-
lar” when used as an input parameter.

In contrast, the notation “out pointer to dynamic array” means that the kernel will allo-
cate space for returned data (as if by vm_allocate) and will modify the pointer named by
the output parameter (that is, the parameter to the function is a pointer to a pointer) to
point to this allocated memory. The task should vm_deallocate this space when done ref-
erencing it.

For a Server Interface, the corresponding version of the above is “in pointer to dynamic
array”. This indicates that the kernel has allocated space for the data (as if by vm_allo-
cate) and is supplying a pointer to the data as the input parameter to the server interface
routine. It is the job of the server interface routine to arrange for this data to be vm_deal-
located when the data is no longer needed.

An “unbounded out in-line array” specifies the variable in-line/out-of-line (referred to as
unbounded in-line) array feature of MIG described in the Server Writer’s Guide. The
caller supplies a pointer to a pointer whose value contains the address of an array whose
size is specified in some other parameter (or known implicitly). Upon return, if this target
pointer no longer points to the caller’s array (most likely because the caller’s array was
not sufficiently large to hold the return data), then the kernel allocated space (as if by
vm_allocate) into which the data was placed; otherwise, the data was placed into the sup-
plied array.

Mach 3 Kernel Interfaces 5

CHAPTER 2 IPC Interface

This chapter discusses the specifics of the kernel’s inter-”process” communication (IPC)
interfaces. The interfaces discussed are only the interfaces directly involved in sending
and receiving IPC messages.

6 Mach 3 Kernel Interfaces

IPC Interface

mach_msg

System Trap / Function — Sends and receives a message using the same mes-
sage buffer

SYNOPSIS

mach_msg_return_t mach_msg
(mach_msg_header_t* msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_t notify);

DESCRIPTION
The mach_msg system call sends and receives Mach messages. Mach messages
contain typed data, which can include port rights and addresses of large regions
of memory.

If the option argument contains MACH_SEND_MSG, it sends a message. The
send_size argument specifies the size of the message to send. The msgh_re-
mote_port field of the message header specifies the destination of the message.

If the option argument contains MACH_RCV_MSG, it receives a message. The
rcv_size argument specifies the size of the message buffer that will receive the
message; messages larger than rcv_size are not received. The rcv_name argu-
ment specifies the port or port set from which to receive.

If the option argument contains both MACH_SEND_MSG and MACH_-
RCV_MSG, then mach_msg does both send and receive operations. If the send
operation encounters an error (any return code other than MACH_MSG_SUC-
CESS), then the call returns immediately without attempting the receive opera-
tion. Semantically the combined call is equivalent to separate send and receive
calls, but it saves a system call and enables other internal optimizations.

If the option argument specifies neither MACH_SEND_MSG nor MACH_-
RCV_MSG, then mach_msg does nothing.

Some options, like MACH_SEND_TIMEOUT and MACH_RCV_TIMEOUT,
share a supporting argument. If these options are used together, they make inde-
pendent use of the supporting argument’s value.

Mach 3 Kernel Interfaces 7

mach_msg

PARAMETERS

msg
[pointer to in/out structure] A message buffer. This should be aligned
on a long-word boundary.

option
[in scalar] Message options are bit values, combined with bitwise-or.
One or both of MACH_SEND_MSG and MACH_RCV_MSG should
be used.Other options act as modifiers.

send_size
[in scalar] When sending a message, specifies the size of the message
buffer. Otherwise zero should be supplied.

rcv_size
[in scalar] When receiving a message, specifies the size of the message
buffer. Otherwise zero should be supplied.

rcv_name
[in scalar] When receiving a message, specifies the port or port set.
Otherwise MACH_PORT_NULL should be supplied.

timeout
[in scalar] When using the MACH_SEND_TIMEOUT and MACH_-
RCV_TIMEOUT options, specifies the time in milliseconds to wait be-
fore giving up. Otherwise MACH_MSG_TIMEOUT_NONE should be
supplied.

notify
[in scalar] When using the MACH_SEND_NOTIFY, MACH_SEND_-
CANCEL, and MACH_RCV_NOTIFY options, specifies the port used
for the notification. Otherwise MACH_PORT_NULL should be sup-
plied.

NOTES
The Mach kernel provides message-oriented, capability-based inter-process
communication. The inter-process communication (IPC) primitives efficiently
support many different styles of interaction, including remote procedure calls,
object-oriented distributed programming, streaming of data, and sending very
large amounts of data.

Major Concepts
The IPC primitives operate on three abstractions: messages, ports, and port sets.
User tasks access all other kernel services and abstractions via the IPC primi-
tives.

8 Mach 3 Kernel Interfaces

IPC Interface

The message primitives let tasks send and receive messages. Tasks send messag-
es to ports. Messages sent to a port are delivered reliably (messages may not be
lost) and are received in the order in which they were sent. Messages contain a
fixed-size header and a variable amount of typed data following the header. The
header describes the destination and size of the message.

The IPC implementation makes use of the VM system to efficiently transfer
large amounts of data. The message body can contain an address of a region of
the sender’s address space which should be transferred as part of the message.
When a task receives a message containing an out-of-line region of data, the
data appears in an unused portion of the receiver’s address space. This transmis-
sion of out-of-line data is optimized so that sender and receiver share the physi-
cal pages of data copy-on-write, and no actual data copy occurs unless the pages
are written. Regions of memory up to the size of a full address space may be
sent in this manner.

Ports hold a queue of messages. Tasks operate on a port to send and receive mes-
sages by exercising capabilities (rights) for the port. Multiple tasks can hold
send rights for a port. Tasks can also hold send-once rights, which grant the abil-
ity to send a single message. Only one task can hold the receive capability (re-
ceive right) for a port. Port rights can be transferred between tasks via
messages. The sender of a message can specify in the message body that the
message contains a port right. If a message contains a receive right for a port,
then the receive right is removed from the sender of the message and the right is
transferred to the receiver of the message. While the receive right is in transit,
tasks holding send rights can still send messages to the port, and they are
queued until a task acquires the receive right and uses it to receive the messages.

Tasks can receive messages from ports and port sets. The port set abstraction al-
lows a single thread to wait for a message from any of several ports. Tasks ma-
nipulate port sets with a port set name, which is taken from the same name
space as are the port rights. The port-set name may not be transferred in a mes-
sage. A port set holds receive rights, and a receive operation on a port set blocks
waiting for a message sent to any of the constituent ports. A port may not be-
long to more than one port set, and if a port is a member of a port set, the holder
of the receive right can’t receive directly from the port.

Port rights are a secure, location-independent way of naming ports. The port
queue is a protected data structure, only accessible via the kernel’s exported
message primitives. Rights are also protected by the kernel; there is no way for
a malicious user task to guess a port’s internal name and send a message to a
port to which it shouldn’t have access. Port rights do not carry any location in-
formation. When a receive right for a port moves from task to task, and even be-
tween tasks on different machines, the send rights for the port remain
unchanged and continue to function.

Port Rights
Each task has its own space of port rights. Port rights are named with positive in-
tegers. Except for the reserved values MACH_PORT_NULL (0) and MACH_-

Mach 3 Kernel Interfaces 9

mach_msg

PORT_DEAD (-1), this is a full 32-bit name space. When the kernel chooses a
name for a new right, it is free to pick any unused name (one which denotes no
right) in the space.

There are three basic kinds of rights: receive rights, send rights and send-once
rights. A port name can name any of these types of rights, a port-set, be a dead
name, or name nothing. Dead names are not capabilities. They act as place-hold-
ers to prevent a name from being otherwise used.

A port is destroyed, or dies, when its receive right is de-allocated. When a port
dies, send and send-once rights for the port turn into dead names. Any messages
queued at the port are destroyed, which de-allocates the port rights and out-of-
line memory in the messages.

Tasks may hold multiple user-references for send rights and dead names. When
a task receives a send right which it already holds, the kernel increments the
right’s user-reference count. When a task de-allocates a send right, the kernel
decrements its user-reference count, and the task only loses the send right when
the count goes to zero.

Send-once rights always have a user-reference count of one, although a port can
have multiple send-once rights, because each send-once right held by a task has
a different name. In contrast, when a task holds send rights or a receive right for
a port, the rights share a single name.

Each send-once right generated guarantees the receipt of a single message, ei-
ther a message sent to that send-once right or, if the send-once right is in any
way destroyed, a send-once notification.

A message body can carry port rights; the msgt_name (msgtl_name) field in a
type descriptor specifies the type of port right and how the port right is to be ex-
tracted from the caller. The values MACH_PORT_NULL and MACH_-
PORT_DEAD are always valid in place of a port right in a message body.

In a sent message, the following msgt_name values denote port rights:

MACH_MSG_TYPE_MAKE_SEND
The message will carry a send right, but the caller must supply a re-
ceive right. The send right is created from the receive right, and the re-
ceive right’s make-send count is incremented.

MACH_MSG_TYPE_COPY_SEND
The message will carry a send right, and the caller should supply a
send right. The user reference count for the supplied send right is not
changed. The caller may also supply a dead name and the receiving
task will get MACH_PORT_DEAD.

10 Mach 3 Kernel Interfaces

IPC Interface

MACH_MSG_TYPE_MOVE_SEND
The message will carry a send right, and the caller should supply a
send right. The user reference count for the supplied send right is decre-
mented, and the right is destroyed if the count becomes zero. Unless a
receive right remains, the name becomes available for recycling. The
caller may also supply a dead name, which loses a user reference, and
the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MAKE_SEND_ONCE
The message will carry a send-once right, but the caller must supply a
receive right. The send-once right is created from the receive right.
Note that send once rights can only be created from the receive right.

MACH_MSG_TYPE_MOVE_SEND_ONCE
The message will carry a send-once right, and the caller should supply
a send-once right. The caller loses the supplied send-once right. The
caller may also supply a dead name, which loses a user reference, and
the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MOVE_RECEIVE
The message will carry a receive right, and the caller should supply a
receive right. The caller loses the supplied receive right, but retains any
send rights with the same name.

If a message carries a send or send-once right, and the port dies while the mes-
sage is in transit, then the receiving task will get MACH_PORT_DEAD instead
of a right.

The following msgt_name values in a received message indicate that it carries
port rights:

MACH_MSG_TYPE_PORT_SEND
This value is an alias for MACH_MSG_TYPE_MOVE_SEND. The
message carried a send right. If the receiving task already has send and/
or receive rights for the port, then that name for the port will be reused.
Otherwise, the new right will have a new, previously unused, name. If
the task already has send rights, it gains a user reference for the right
(unless this would cause the user-reference count to overflow). Other-
wise, it acquires send rights, with a user-reference count of one.

MACH_MSG_TYPE_PORT_SEND_ONCE
This value is an alias for MACH_MSG_TYPE_MOVE_SEN-
D_ONCE. The message carried a send-once right. The right will have
a new, previously unused, name.

MACH_MSG_TYPE_PORT_RECEIVE
This value is an alias for MACH_MSG_TYPE_MOVE_RECEIVE.
The message carried a receive right. If the receiving task already has
send rights for the port, then that name for the port will be reused. Oth-

Mach 3 Kernel Interfaces 11

mach_msg

erwise, the right will have a new, previously unused, name. The make-
send count and sequence number of the receive right are reset to zero,
but the port retains other attributes like queued messages, extant send
and send-once rights, and requests for port-destroyed and no-senders
notifications. (Note: It is currently planned to remove port-destroyed
notifications from the kernel interface and to define no-senders notifica-
tions as being canceled when a receive right is moved.)

Memory
A message body can contain an address of a region of the sender’s address
space which should be transferred as part of the message. The message carries a
logical copy of the memory, but the kernel uses VM techniques to defer any ac-
tual page copies. Unless the sender or the receiver modifies the data, the physi-
cal pages remain shared.

An out-of-line transfer occurs when the data’s type descriptor specifies msgt_in-
line as FALSE. The address of the memory region should follow the type de-
scriptor in the message body. The type descriptor and the address contribute to
the message’s size (send_size, msgh_size). The out-of-line data does not contrib-
ute to the message’s size.

The name, size, and number fields in the type descriptor describe the type and
length of the out-of-line data, not the address. Out-of-line memory frequently re-
quires long type descriptors (mach_msg_type_long_t), because the msgt_num-
ber field is too small to describe a page of 4K bytes.

Out-of-line memory arrives somewhere in the receiver’s address space as new
memory. It has the same inheritance and protection attributes as newly vm_allo-
cate’ed memory. The receiver has the responsibility of de-allocating (with vm_-
deallocate) the memory when it is no longer needed. Security-conscious
receivers should exercise caution when dealing with out-of-line memory from
un-trustworthy sources, because the memory may be backed by an unreliable
memory manager.

Null out-of-line memory is legal. If the out-of-line region size is zero (for exam-
ple, because msgtl_number is zero), then the region’s specified address is ig-
nored. A received null out-of-line memory region always has a zero address.

Unaligned addresses and region sizes that are not page multiples are legal. A re-
ceived message can also contain regions with unaligned addresses and funny siz-
es. In the general case, the first and last pages in the new memory region in the
receiver do not contain data from the sender, but are partly zero. The received
address points into the middle of the first page. This possibility doesn’t compli-
cate de-allocation, because vm_deallocate does the right thing, rounding the
start address down and the end address up to de-allocate all arrived pages.

Out-of-line memory has a de-allocate option, controlled by the msgt_deallocate
bit. If it is TRUE and the out-of-line memory region is not null, then the region
is implicitly de-allocated from the sender, as if by vm_deallocate. In particular,

12 Mach 3 Kernel Interfaces

IPC Interface

the start and end addresses are rounded so that every page overlapped by the
memory region is de-allocated. The use of msgt_deallocate effectively changes
the memory copy into a memory movement. In a received message, msgt_deal-
locate is TRUE in type descriptors for out-of-line memory.

Out-of-line memory can carry port rights.

Message Send
The send operation queues a message to a port. The message carries a copy of
the caller’s data. After the send, the caller can freely modify the message buffer
or the out-of-line memory regions and the message contents will remain un-
changed.

Message delivery is reliable and sequenced. Messages are not lost, and messag-
es sent to a port from a single thread are received in the order in which they
were sent.

If the destination port’s queue is full, then several things can happen. If the mes-
sage is sent to a send-once right (msgh_remote_port carries a send-once right),
then the kernel ignores the queue limit and delivers the message. Otherwise the
caller blocks until there is room in the queue, unless the MACH_SEND_TIME-
OUT or MACH_SEND_NOTIFY options are used. If a port has several blocked
senders, then any of them may queue the next message when space in the queue
becomes available, with the proviso that a blocked sender will not be indefinite-
ly starved.

These options modify MACH_SEND_MSG. If MACH_SEND_MSG is not
also specified, they are ignored.

MACH_SEND_TIMEOUT
The timeout argument should specify a maximum time (in millisec-
onds) for the call to block before giving up. If the message can’t be
queued before the timeout interval elapses, then the call returns
MACH_SEND_TIMED_OUT. A zero timeout is legitimate.

MACH_SEND_NOTIFY
The notify argument should specify a receive right for a notify port. If
the send were to block, then instead the message is queued, MACH_-
SEND_WILL_NOTIFY is returned, and a msg-accepted notification is
requested. If MACH_SEND_TIMEOUT is also specified, then
MACH_SEND_NOTIFY doesn’t take effect until the timeout interval
elapses.

Only one message at a time can be forcibly queued to a send right with
MACH_SEND_NOTIFY. A msg-accepted notification is sent to the no-
tify port when another message can be forcibly queued. If an attempt is
made to use MACH_SEND_NOTIFY before then, the call returns a
MACH_SEND_NOTIFY_IN_PROGRESS error.

Mach 3 Kernel Interfaces 13

mach_msg

The msg-accepted notification carries the name of the send right. If the
send right is de-allocated before the msg-accepted notification is gener-
ated, then the msg-accepted notification carries the value MACH_-
PORT_NULL. If the destination port is destroyed before the
notification is generated, then a send-once notification is generated in-
stead.

(Note: It is currently planned that this option will be deleted, as well as
the provision of the corresponding notification.)

MACH_SEND_INTERRUPT
If specified, the mach_msg call will return MACH_SEND_INTER-
RUPTED if a software interrupt aborts the call. Otherwise, the send op-
eration will be retried.

MACH_SEND_CANCEL
The notify argument should specify a receive right for a notify port. If
the send operation removes the destination port right from the caller,
and the removed right had a dead-name request registered for it, and
notify is the notify port for the dead-name request, then the dead-name
request may be silently canceled (instead of resulting in what would
have been a port-deleted notification).

This option is typically used to cancel a dead-name request made with
the MACH_RCV_NOTIFY option. It should only be used as an optimi-
zation.

Some return codes, like MACH_SEND_TIMED_OUT, imply that the message
was almost sent, but could not be queued. In these situations, the kernel tries to
return the message contents to the caller with a pseudo-receive operation. This
prevents the loss of port rights or memory which only exist in the message. For
example, a receive right which was moved into the message, or out-of-line mem-
ory sent with the de-allocate bit.

The pseudo-receive operation is very similar to a normal receive operation. The
pseudo-receive handles the port rights in the message header as if they were in
the message body. They are not reversed (as is the appearance in a normal re-
ceived message). After the pseudo-receive, the message is ready to be resent. If
the message is not resent, note that out-of-line memory regions may have
moved and some port rights may have changed names.

The pseudo-receive operation may encounter resource shortages. This is similar
to a MACH_RCV_BODY_ERROR return code from a receive operation. When
this happens, the normal send return codes are augmented with the MACH_MS-
G_IPC_SPACE, MACH_MSG_VM_SPACE, MACH_MSG_IPC_KERNEL,
and MACH_MSG_VM_KERNEL bits to indicate the nature of the resource
shortage.

14 Mach 3 Kernel Interfaces

IPC Interface

The queueing of a message carrying receive rights may create a circular loop of
receive rights and messages, which can never be received. For example, a mes-
sage carrying a receive right can be sent to that receive right. This situation is
not an error, but the kernel will garbage-collect such loops, destroying the mes-
sages.

Message Receive
The receive operation de-queues a message from a port. The receiving task ac-
quires the port rights and out-of-line memory regions carried in the message.

The rcv_name argument specifies a port or port set from which to receive. If a
port is specified, the caller must possess the receive right for the port and the
port must not be a member of a port set. If no message is present, then the call
blocks, subject to the MACH_RCV_TIMEOUT option.

If a port set is specified, the call will receive a message sent to any of the mem-
ber ports. It is permissible for the port set to have no member ports, and ports
may be added and removed while a receive from the port set is in progress. The
received message can come from any of the member ports which have messag-
es, with the proviso that a member port with messages will not be indefinitely
starved. The msgh_local_port field in the received message header specifies
from which port in the port set the message came.

The rcv_size argument specifies the size of the caller’s message buffer. The
mach_msg call will not receive a message larger than rcv_size. Messages that
are too large are destroyed, unless the MACH_RCV_LARGE option is used.

The destination and reply ports are reversed in a received message header. The
msgh_local_port field carries the name of the destination port, from which the
message was received, and the msgh_remote_port field carries the reply port
right. The bits in msgh_bits are also reversed. The MACH_MSGH_BITS_LO-
CAL bits have the value MACH_MSG_TYPE_PORT_SEND if the message
was sent to a send right, and the value MACH_MSG_TYPE_PORT_SEN-
D_ONCE if was sent to a send-once right. The MACH_MSGH_BITS_RE-
MOTE bits describe the reply port right.

Received messages are stamped with a sequence number, taken from the port
from which the message was received. (Messages received from a port set are
stamped with a sequence number from the appropriate member port.) Newly cre-
ated ports start with a zero sequence number, and the sequence number is reset
to zero whenever the port's receive right moves between tasks. When a message
is de-queued from the port, it is stamped with the port's sequence number and
the port's sequence number is then incremented. The de-queue and increment
operations are atomic, so that multiple threads receiving messages from a port
can use the msgh_seqno field to reconstruct the original order of the messages.

A received message can contain port rights and out-of-line memory. The ms-
gh_local_port field does not carry a port right; the act of receiving the message
destroys the send or send-once right for the destination port. The msgh_remote_-

Mach 3 Kernel Interfaces 15

mach_msg

port field does carry a port right, and the message body can carry port rights and
memory if MACH_MSGH_BITS_COMPLEX is present in msgh_bits. Re-
ceived port rights and memory should be consumed or de-allocated in some
fashion.

In almost all cases, msgh_local_port will specify the name of a receive right, ei-
ther rcv_name, or, if rcv_name is a port set, a member of rcv_name. If other
threads are concurrently manipulating the receive right, the situation is more
complicated. If the receive right is renamed during the call, then msgh_lo-
cal_port specifies the right’s new name. If the caller loses the receive right after
the message was de-queued from it, then mach_msg will proceed instead of re-
turning MACH_RCV_PORT_DIED. If the receive right was destroyed, then ms-
gh_local_port specifies MACH_PORT_DEAD. If the receive right still exists,
but isn’t held by the caller, then msgh_local_port specifies MACH_PORT_-
NULL.

These options modify MACH_RCV_MSG. If MACH_RCV_MSG is not also
specified, they are ignored.

MACH_RCV_TIMEOUT
The timeout argument should specify a maximum time (in millisec-
onds) for the call to block before giving up. If no message arrives be-
fore the timeout interval elapses, then the call returns
MACH_RCV_TIMED_OUT. A zero timeout is legitimate.

MACH_RCV_NOTIFY
The notify argument should specify a receive right for a notify port. If
receiving the reply port creates a new port right in the caller, then the
notify port is used to request a dead-name notification for the new port
right.

MACH_RCV_INTERRUPT
If specified, the mach_msg call will return MACH_RCV_INTER-
RUPTED if a software interrupt aborts the call. Otherwise, the receive
operation will be retried.

MACH_RCV_LARGE
If the message is larger than rcv_size, then the message remains
queued instead of being destroyed. The call returns MACH_RCV_-
TOO_LARGE and the actual size of the message is returned in the ms-
gh_size field of the message header. If this option is not specified,
messages too large will be de-queued and then destroyed; the caller re-
ceives the message's header, with all fields correct, including the desti-
nation port but excepting the reply port, which is
MACH_PORT_NULL.

If a resource shortage prevents the reception of a port right, the port right is de-
stroyed and the caller sees the name MACH_PORT_NULL. If a resource short-
age prevents the reception of an out-of-line memory region, the region is

16 Mach 3 Kernel Interfaces

IPC Interface

destroyed and the caller sees a zero address. In addition, the msgt_size (msgtl_-
size) field in the region’s type descriptor is changed to zero. If a resource short-
age prevents the reception of out-of-line memory carrying port rights, then the
port rights are always destroyed if the memory region can not be received. A
task never receives port rights or memory for which it is not told.

The MACH_RCV_HEADER_ERROR return code indicates a resource short-
age in the reception of the message’s header. The reply port and all port rights
and memory in the message body are destroyed. The caller receives the messag-
e’s header, with all fields correct except for the reply port.

The MACH_RCV_BODY_ERROR return code indicates a resource shortage in
the reception of the message’s body. The message header, including the reply
port, is correct. The kernel attempts to transfer all port rights and memory re-
gions in the body, and only destroys those that can’t be transferred.

Atomicity
The mach_msg call handles port rights in a message header atomically. Port
rights and out-of-line memory in a message body do not enjoy this atomicity
guarantee. The message body may be processed front-to-back, back-to-front,
first out-of-line memory then port rights, in some random order, or even atomi-
cally.

For example, consider sending a message with the destination port specified as
MACH_MSG_TYPE_MOVE_SEND and the reply port specified as
MACH_MSG_TYPE_COPY_SEND. The same send right, with one user-refer-
ence, is supplied for both the msgh_remote_port and msgh_local_port fields. Be-
cause mach_msg processes the message header atomically, this succeeds. If
msgh_remote_port were processed before msgh_local_port, then mach_msg
would return MACH_SEND_INVALID_REPLY in this situation.

On the other hand, suppose the destination and reply port are both specified as
MACH_MSG_TYPE_MOVE_SEND, and again the same send right with one
user-reference is supplied for both. Now the send operation fails, but because it
processes the header atomically, mach_msg can return either MACH_-
SEND_INVALID_DEST or MACH_SEND_INVALID_REPLY.

For example, consider receiving a message at the same time another thread is de-
allocating the destination receive right. Suppose the reply port field carries a
send right for the destination port. If the de-allocation happens before the de-
queuing, then the receiver gets MACH_RCV_PORT_DIED. If the de-allocation
happens after the receive, then the msgh_local_port and the msgh_remote_port
fields both specify the same right, which becomes a dead name when the re-
ceive right is de-allocated. If the de-allocation happens between the de-queue
and the receive, then the msgh_local_port and msgh_remote_port fields both
specify MACH_PORT_DEAD. Because the header is processed atomically, it is
not possible for just one of the two fields to hold MACH_PORT_DEAD.

Mach 3 Kernel Interfaces 17

mach_msg

The MACH_RCV_NOTIFY option provides a more likely example. Suppose a
message carrying a send-once right reply port is received with MACH_-
RCV_NOTIFY at the same time the reply port is destroyed. If the reply port is
destroyed first, then msgh_remote_port specifies MACH_PORT_DEAD and the
kernel does not generate a dead-name notification. If the reply port is destroyed
after it is received, then msgh_remote_port specifies a dead name for which the
kernel generates a dead-name notification. It is not possible to receive the reply
port right and have it turn into a dead name before the dead-name notification is
requested; as part of the message header the reply port is received atomically.

Implementation
mach_msg is a wrapper for a system call. mach_msg has the responsibility for
repeating the interrupted system call.

CAUTIONS
Sending out-of-line memory with a non-page-aligned address, or a size which is
not a page multiple, works but with a caveat. The extra bytes in the first and last
page of the received memory are not zeroed, so the receiver can peek at more
data than the sender intended to transfer. This might be a security problem for
the sender.

If MACH_RCV_TIMEOUT is used without MACH_RCV_INTERRUPT, then
the timeout duration might not be accurate. When the call is interrupted and au-
tomatically retried, the original timeout is used. If interrupts occur frequently
enough, the timeout interval might never expire. MACH_SEND_TIMEOUT
without MACH_SEND_INTERRUPT suffers from the same problem.

RETURN VALUE
The send operation can generate the following return codes. These return codes
imply that the call did nothing:

MACH_SEND_MSG_TOO_SMALL
The specified send_size was smaller than the minimum size for a mes-
sage.

MACH_SEND_NO_BUFFER
A resource shortage prevented the kernel from allocating a message
buffer.

MACH_SEND_INVALID_DATA
The supplied message buffer was not readable.

MACH_SEND_INVALID_HEADER
The msgh_bits value was invalid.

MACH_SEND_INVALID_DEST
The msgh_remote_port value was invalid.

18 Mach 3 Kernel Interfaces

IPC Interface

MACH_SEND_INVALID_REPLY
The msgh_local_port value was invalid.

MACH_SEND_INVALID_NOTIFY
When using MACH_SEND_CANCEL, the notify argument did not de-
note a valid receive right.

These return codes imply that some or all of the message was destroyed:

MACH_SEND_INVALID_MEMORY
The message body specified out-of-line data that was not readable.

MACH_SEND_INVALID_RIGHT
The message body specified a port right which the caller didn’t possess.

MACH_SEND_INVALID_TYPE
A type descriptor was invalid.

MACH_SEND_MSG_TOO_SMALL
The last data item in the message ran over the end of the message.

These return codes imply that the message was returned to the caller with a
pseudo-receive operation:

MACH_SEND_TIMED_OUT
The timeout interval expired.

MACH_SEND_INTERRUPTED
A software interrupt occurred.

MACH_SEND_INVALID_NOTIFY
When using MACH_SEND_NOTIFY, the notify argument did not de-
note a valid receive right.

MACH_SEND_NO_NOTIFY
A resource shortage prevented the kernel from setting up a msg-accept-
ed notification.

MACH_SEND_NOTIFY_IN_PROGRESS
A msg-accepted notification was already requested, and hasn’t yet
been generated.

These return codes imply that the message was queued:

MACH_SEND_WILL_NOTIFY
The message was forcibly queued, and a msg-accepted notification was
requested.

Mach 3 Kernel Interfaces 19

mach_msg

MACH_MSG_SUCCESS
The message was queued.

The receive operation can generate the following return codes. These return
codes imply that the call did not de-queue a message:

MACH_RCV_INVALID_NAME
The specified rcv_name was invalid.

MACH_RCV_IN_SET
The specified port was a member of a port set.

MACH_RCV_TIMED_OUT
The timeout interval expired.

MACH_RCV_INTERRUPTED
A software interrupt occurred.

MACH_RCV_PORT_DIED
The caller lost the rights specified by rcv_name.

MACH_RCV_PORT_CHANGED
rcv_name specified a receive right which was moved into a port set dur-
ing the call.

MACH_RCV_TOO_LARGE
When using MACH_RCV_LARGE, and the message was larger than
rcv_size. The message is left queued, and its actual size is returned in
the msgh_size field of the message buffer.

These return codes imply that a message was de-queued and destroyed:

MACH_RCV_HEADER_ERROR
A resource shortage prevented the reception of the port rights in the
message header.

MACH_RCV_INVALID_NOTIFY
When using MACH_RCV_NOTIFY, the notify argument did not de-
note a valid receive right.

MACH_RCV_TOO_LARGE
When not using MACH_RCV_LARGE, a message larger than rcv_size
was de-queued and destroyed.

These return codes imply that a message was received:

MACH_RCV_BODY_ERROR
A resource shortage prevented the reception of a port right or out-of-
line memory region in the message body.

20 Mach 3 Kernel Interfaces

IPC Interface

MACH_RCV_INVALID_DATA
The specified message buffer was not writable. The calling task did
successfully receive the port rights and out-of-line memory regions in
the message.

MACH_MSG_SUCCESS
A message was received.

Resource shortages can occur after a message is de-queued, while transferring
port rights and out-of-line memory regions to the receiving task. The
mach_msg call returns MACH_RCV_HEADER_ERROR or MACH_RCV_-
BODY_ERROR in this situation. These return codes always carry extra bits (bit-
wise-or’ed) that indicate the nature of the resource shortage:

MACH_MSG_IPC_SPACE
There was no room in the task’s IPC name space for another port name.

MACH_MSG_VM_SPACE
There was no room in the task’s VM address space for an out-of-line
memory region.

MACH_MSG_IPC_KERNEL
A kernel resource shortage prevented the reception of a port right.

MACH_MSG_VM_KERNEL
A kernel resource shortage prevented the reception of an out-of-line
memory region.

RELATED INFORMATION
Functions: mach_msg_receive, mach_msg_send.

Data Structures: mach_msg_header, mach_msg_type, mach_msg_type_long,
mach_msg_accepted_notification, mach_send_once_notification.

Mach 3 Kernel Interfaces 21

mach_msg_receive

mach_msg_receive

Function — Receives a message from a port or port set

LIBRARY
Not declared anywhere.

SYNOPSIS

mach_msg_return_t mach_msg_receive
(mach_msg_header_t* header);

DESCRIPTION
The mach_msg_receive function is a shorthand for the following call:

mach_msg (header, MACH_RCV_MSG, 0, header→msgh_size,
header→msgh_local_port, MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

PARAMETERS

header
[pointer to in/out structure] The address of the buffer that is to receive
the message. The msgh_local_port and msgh_size fields in header
must be set.

RETURN VALUE
Refer to mach_msg for a description of the various receive errors.

RELATED INFORMATION
Functions: mach_msg, mach_msg_send.

Data Structures: mach_msg_header, mach_msg_type, mach_msg_type_long.

22 Mach 3 Kernel Interfaces

IPC Interface

mach_msg_send

Function — Sends a message to a port

LIBRARY
Not declared anywhere.

SYNOPSIS

mach_msg_return_t mach_msg_send
(mach_msg_header_t* header);

DESCRIPTION
The mach_msg_send function is a shorthand for the following call:

mach_msg (header, MACH_SEND_MSG, header→msgh_size, 0,
MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

PARAMETERS

header
[pointer to in structure] The address of the buffer that contains the mes-
sage to be sent.

RETURN VALUE
Refer to mach_msg for a description of the send errors.

RELATED INFORMATION
Functions: mach_msg, mach_msg_receive.

Data Structures: mach_msg_header, mach_msg_type, mach_msg_type_long.

Mach 3 Kernel Interfaces 23

CHAPTER 3 Port Manipulation
Interface

This chapter discusses the specifics of the kernel’s port manipulation interfaces. This in-
cludes port, port set and port right related functions. Also included are interfaces that re-
turn port related status information that applies to a single task.

24 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_dead_name

Server Interface — Handles the occurrence of a dead-name notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_dead_name
(notify_port_t notify,
mach_port_name_t name);

DESCRIPTION
A do_mach_notify_dead_name function is called by notify_server as the re-
sult of a kernel message indicating that the port name is now dead as the result
of the associated receive right having died. In contrast, a port-deleted notifica-
tion indicates that the port name is no longer usable (that is, it no longer names
a valid right), typically as a result of the right so named being consumed or
moved. notify is the port named via mach_port_request_notification.

SEQUENCE NUMBER FORM
do_seqnos_mach_notify_dead_name

kern_return_t do_seqnos_mach_notify_dead_name
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_name_t name);

PARAMETERS

notify
[in scalar] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The dead name.

RETURN VALUE

KERN_SUCCESS
The notification was received.

Mach 3 Kernel Interfaces 25

do_mach_notify_dead_name

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_msg_accepted, do_mach_notify_no_senders, do_mach_no-
tify_port_deleted, do_mach_notify_port_destroyed, do_mach_notify_sen-
d_once.

26 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_msg_accepted

Server Interface — Handles the occurrence of a message accepted notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_msg_accepted
(notify_port_t notify,
mach_port_name_t name);

DESCRIPTION
A do_mach_notify_msg_accepted function is called by notify_server as the
result of a kernel message indicating that a message forcibly queued to a port
via MACH_NOTIFY_SEND was accepted. notify is the port named via
mach_msg.

(Note: This feature is current planned for deletion.)

SEQUENCE NUMBER FORM
do_seqnos_mach_notify_msg_accepted

kern_return_t do_seqnos_mach_notify_msg_accepted
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_name_t name);

PARAMETERS

notify
[in scalar] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The port whose message was accepted.

RETURN VALUE

KERN_SUCCESS
The notification was received.

Mach 3 Kernel Interfaces 27

do_mach_notify_msg_accepted

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_dead_name, do_mach_notify_no_senders, do_mach_noti-
fy_port_deleted, do_mach_notify_port_destroyed, do_mach_notify_sen-
d_once.

28 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_no_senders

Server Interface — Handles the occurrence of a no-more-senders notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_no_senders
(notify_port_t notify,
mach_port_mscount_t mscount);

DESCRIPTION
A do_mach_notify_no_senders function is called by notify_server as the re-
sult of a kernel message indicating that a receive right has no more senders. noti-
fy is the port named via mach_port_request_notification.

SEQUENCE NUMBER FORM
do_seqnos_mach_notify_no_senders

kern_return_t do_seqnos_mach_notify_no_senders
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_mscount_t mscount);

PARAMETERS

notify
[in scalar] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

mscount
[in scalar] The value the port’s make-send count had when it was gener-
ated.

RETURN VALUE

KERN_SUCCESS
The notification was received.

Mach 3 Kernel Interfaces 29

do_mach_notify_no_senders

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_msg_accepted, do_mach_notify_dead_name, do_mach_no-
tify_port_deleted, do_mach_notify_port_destroyed, do_mach_notify_sen-
d_once.

30 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_port_deleted

Server Interface — Handles the occurrence of a port-deleted notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_port_deleted
(notify_port_t notify,
mach_port_name_t name);

DESCRIPTION
A do_mach_notify_port_deleted function is called by notify_server as the re-
sult of a kernel message indicating that a port name is no longer usable (that is,
it no longer names a valid right), typically as a result of the right so named be-
ing consumed or moved. In contrast, a dead-name notification indicates that the
port name is now dead as the result of the associated receive right having died.
notify is the port named via mach_port_request_notification.

SEQUENCE NUMBER FORM
do_seqnos_mach_notify_port_deleted

kern_return_t do_seqnos_mach_notify_port_deleted
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_name_t name);

PARAMETERS

notify
[in scalar] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The invalid name.

RETURN VALUE

KERN_SUCCESS
The notification was received.

Mach 3 Kernel Interfaces 31

do_mach_notify_port_deleted

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_dead_name, do_mach_notify_msg_accepted, do_mach_no-
tify_no_senders, do_mach_notify_port_destroyed, do_mach_notify_sen-
d_once.

32 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_port_destroyed

Server Interface — Handles the occurrence of a port destroyed notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_port_destroyed
(notify_port_t notify,
mach_port_receive_t rights);

DESCRIPTION
A do_mach_notify_port_destroyed function is called by notify_server as the
result of a kernel message indicating that a receive right would have been de-
stroyed. notify is the port named via mach_port_request_notification.

(Note: This feature is currently planned for deletion.)

SEQUENCE NUMBER FORM
do_seqnos_mach_notify_port_destroyed

kern_return_t do_seqnos_mach_notify_port_destroyed
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_receive_t rights);

PARAMETERS

notify
[in scalar] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

rights
[in scalar] The receive right that would have been destroyed.

RETURN VALUE

KERN_SUCCESS
The notification was received.

Mach 3 Kernel Interfaces 33

do_mach_notify_port_destroyed

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_msg_accepted, do_mach_notify_no_senders, do_mach_no-
tify_dead_name, do_mach_notify_port_deleted, do_mach_notify_sen-
d_once.

34 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_send_once

Server Interface — Handles the occurrence of a send-once notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_send_once
(notify_port_t notify);

DESCRIPTION
A do_mach_notify_send_once function is called by notify_server as the result
of a kernel message indicating that a send-once right was in any way destroyed.
notify is the port named via mach_msg.

SEQUENCE NUMBER FORM
do_seqnos_mach_notify_send_once

kern_return_t do_seqnos_mach_notify_send_once
(notify_port_t notify,
mach_port_seqno_t seqno);

PARAMETERS

notify
[in scalar] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

RETURN VALUE

KERN_SUCCESS
The notification was received.

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_msg_accepted, do_mach_notify_no_senders, do_mach_no-
tify_port_deleted, do_mach_notify_port_destroyed, do_mach_notify_-
dead_name.

Mach 3 Kernel Interfaces 35

mach_port_allocate

mach_port_allocate

Function — Creates a port right

SYNOPSIS

kern_return_t mach_port_allocate
(mach_port_t task,
mach_port_right_t right,
mach_port_t* name);

DESCRIPTION
The mach_port_allocate function creates a new right in the specified task. The
new right’s name is returned in name.

PARAMETERS

task
[in scalar] The task acquiring the port right.

right
[in scalar] The kind of entity to be created. This is one of the following:

MACH_PORT_RIGHT_RECEIVE
mach_port_allocate creates a port. The new port is not a
member of any port set. It doesn’t have any extant send or
send-once rights. Its make-send count is zero, its sequence
number is zero, its queue limit is MACH_PORT_QLIM-
IT_DEFAULT, and it has no queued messages. name denotes
the receive right for the new port.

task does not hold send rights for the new port, only the re-
ceive right. mach_port_insert_right and mach_port_extrac-
t_right can be used to convert the receive right into a
combined send/receive right.

MACH_PORT_RIGHT_PORT_SET
mach_port_allocate creates a port set. The new port set has
no members.

MACH_PORT_RIGHT_DEAD_NAME
mach_port_allocate creates a dead name. The new dead
name has one user reference.

name
[out scalar] The task’s name for the port right. This can be any name
that wasn’t in use.

36 Mach 3 Kernel Interfaces

Port Manipulation Interface

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_VALUE
right was invalid.

KERN_NO_SPACE
There was no room in task’s IPC name space for another right.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION
Functions: mach_port_allocate_name, mach_port_deallocate, mach_port_-
insert_right, mach_port_extract_right.

Mach 3 Kernel Interfaces 37

mach_port_allocate_name

mach_port_allocate_name

Function — Creates a port right with a given name

SYNOPSIS

kern_return_t mach_port_allocate_name
(mach_port_t task,
mach_port_right_t right,
mach_port_t name);

DESCRIPTION
The mach_port_allocate_name function creates a new right in the specified
task, with a specified name for the new right.

PARAMETERS

task
[in scalar] The task acquiring the port right.

right
[in scalar] The kind of right which will be created. This is one of the
following values:

MACH_PORT_RIGHT_RECEIVE
mach_port_allocate_name creates a port. The new port is
not a member of any port set. It doesn’t have any extant send
or send-once rights. Its make-send count is zero, its sequence
number is zero, its queue limit is MACH_PORT_QLIM-
IT_DEFAULT, and it has no queued messages. name denotes
the receive right for the new port.

task does not hold send rights for the new port, only the re-
ceive right. mach_port_insert_right and mach_port_extrac-
t_right can be used to convert the receive right into a
combined send/receive right.

MACH_PORT_RIGHT_PORT_SET
mach_port_allocate_name creates a port set. The new port
set has no members.

MACH_PORT_RIGHT_DEAD_NAME
mach_port_allocate_name creates a new dead name. The
new dead name has one user reference.

38 Mach 3 Kernel Interfaces

Port Manipulation Interface

name
[in scalar] The task’s name for the port right. name must not already be
in use for some right, and it can’t be the reserved values MACH_-
PORT_NULL and MACH_PORT_DEAD.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_VALUE
right was invalid.

KERN_INVALID_VALUE
name was MACH_PORT_NULL or MACH_PORT_DEAD.

KERN_NAME_EXISTS
name was already in use for a port right.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION
Functions: mach_port_allocate, mach_port_deallocate, mach_port_rename.

Mach 3 Kernel Interfaces 39

mach_port_deallocate

mach_port_deallocate

Function — Releases a user reference for a right

SYNOPSIS

kern_return_t mach_port_deallocate
(mach_port_t task,
mach_port_t name);

DESCRIPTION
The mach_port_deallocate function releases a user reference for a right. It is
an alternate form of mach_port_mod_refs that allows a task to release a user
reference for a send or send-once right without failing if the port has died and
the right is now actually a dead name.

If name denotes a dead name, send right, or send-once right, then the right loses
one user reference. If it only had one user reference, then the right is destroyed.

PARAMETERS

task
[in scalar] The task holding the right.

name
[in scalar] The task’s name for the right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted an invalid right.

RELATED INFORMATION
Functions: mach_port_allocate, mach_port_allocate_name, mach_port_mo-
d_refs.

40 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_destroy

Function — Removes a task’s rights for a name

SYNOPSIS

kern_return_t mach_port_destroy
(mach_port_t task;
mach_port_t name);

DESCRIPTION
The mach_port_destroy function de-allocates all rights denoted by a name.
The name becomes immediately available for reuse.

For most purposes, mach_port_mod_refs and mach_port_deallocate are pref-
erable.

If name denotes a port set, then all members of the port set are implicitly re-
moved from the port set.

If name denotes a receive right that is a member of a port set, the receive right is
implicitly removed from the port set. If there is a port-destroyed request regis-
tered for the port, then the receive right is not actually destroyed, but instead is
sent in a port-destroyed notification. (Note: Port destroyed notifications are cur-
rently planned for deletion.) If there is no registered port-destroyed request, re-
maining messages queued to the port are destroyed and extant send and send-
once rights turn into dead names. If those send and send-once rights have dead-
name requests registered, then dead-name notifications are generated for them.

If name denotes a send-once right, then the send-once right is used to produce a
send-once notification for the port.

If name denotes a send-once, send, and/or receive right, and it has a dead-name
request registered, then the registered send-once right is used to produce a port-
deleted notification for the name.

PARAMETERS

task
[in scalar] The task holding the right.

name
[in scalar] The task’s name for the right.

Mach 3 Kernel Interfaces 41

mach_port_destroy

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

RELATED INFORMATION
Functions: mach_port_allocate, mach_port_allocate_name, mach_port_mo-
d_refs, mach_port_deallocate, mach_port_request_notification.

42 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_extract_right

Function — Extracts a port right from a task

SYNOPSIS

kern_return_t mach_port_extract_right
(mach_port_t task,
mach_port_t name,
mach_msg_type_name_t desired_type,
mach_port_t* right,
mach_msg_type_name_t* acquired_type);

DESCRIPTION
The mach_port_extract_right function extracts a port right from the target
task and returns it to the caller as if the task sent the right voluntarily, using de-
sired_type as the value of msgt_name. See mach_msg.

The returned value of acquired_type will be MACH_MSG_TYPE_PORT_S-
END if a send right is extracted, MACH_MSG_TYPE_PORT_RECEIVE if a re-
ceive right is extracted, and MACH_MSG_TYPE_PORT_SEND_ONCE if a
send-once right is extracted.

PARAMETERS

task
[in scalar] The task holding the port right.

name
[in scalar] The task’s name for the port right.

desired_type
[in scalar] IPC type, specifying how the right should be extracted.

right
[out scalar] The extracted right.

acquired_type
[out scalar] The type of the extracted right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

Mach 3 Kernel Interfaces 43

mach_port_extract_right

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted an invalid right.

KERN_INVALID_VALUE
desired_type was invalid.

RELATED INFORMATION
Functions: mach_port_insert_right, mach_msg.

44 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_get_receive_status

Function — Returns the status of a receive right

SYNOPSIS

kern_return_t mach_port_get_receive_status
(mach_port_t task,
mach_port_t name,
mach_port_status_t* status);

DESCRIPTION
The mach_port_get_receive_status function returns the current status of the
specified receive right.

PARAMETERS

task
[in scalar] The task holding the receive right.

name
[in scalar] The task’s name for the receive right.

status
[out structure] The status information for the receive right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a receive right.

RELATED INFORMATION
Functions: mach_port_set_qlimit, mach_port_set_mscount, mach_port_s-
et_seqno.

Data Structures: mach_port_status.

Mach 3 Kernel Interfaces 45

mach_port_get_refs

mach_port_get_refs

Function — Retrieves the number of user references for a right

SYNOPSIS

kern_return_t mach_port_get_refs
(mach_port_t task,
mach_port_t name,
mach_port_right_t right,
mach_port_urefs_t* refs);

DESCRIPTION
The mach_port_get_refs function returns the number of user references a task
has for a right.

If name denotes a right, but not the type of right specified, then zero is returned.
Otherwise a positive number of user references is returned. Note a name may si-
multaneously denote send and receive rights.

PARAMETERS

task
[in scalar] The task holding the right.

name
[in scalar] The task’s name for the right.

right
[in scalar] The type of right / entity being examined: MACH_POR-
T_RIGHT_SEND, MACH_PORT_RIGHT_RECEIVE, MACH_POR-
T_RIGHT_SEND_ONCE, MACH_PORT_RIGHT_PORT_SET or
MACH_PORT_RIGHT_DEAD_NAME.

refs
[out scalar] Number of user references.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

46 Mach 3 Kernel Interfaces

Port Manipulation Interface

KERN_INVALID_VALUE
right was invalid.

KERN_INVALID_NAME
name did not denote a right.

RELATED INFORMATION
Functions: mach_port_mod_refs.

Mach 3 Kernel Interfaces 47

mach_port_get_set_status

mach_port_get_set_status

Function — Returns the members of a port set

SYNOPSIS

kern_return_t mach_port_get_set_status
(mach_port_t task,
mach_port_t name,
mach_port_array_t* members,
mach_msg_type_number_t* count);

DESCRIPTION
The mach_port_get_set_status function returns the members of a port set.
members is an array that is automatically allocated when the reply message is re-
ceived.

PARAMETERS

task
[in scalar] The task holding the port set.

name
[in scalar] The task’s name for the port set.

members
[out pointer to dynamic array of mach_port_t] The task’s names for the
port set’s members.

count
[out scalar] The number of member names returned.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a port set.

48 Mach 3 Kernel Interfaces

Port Manipulation Interface

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION
Functions: mach_port_move_member, vm_deallocate.

Mach 3 Kernel Interfaces 49

mach_port_insert_right

mach_port_insert_right

Function — Inserts a port right into a task

SYNOPSIS

kern_return_t mach_port_insert_right
(mach_port_t task,
mach_port_t name,
mach_port_t right,
mach_msg_type_name_t right_type);

DESCRIPTION
The mach_port_insert_right function inserts into task the caller’s right for a
port, using a specified name for the right in the target task.

The specified name can’t be one of the reserved values MACH_PORT_NULL
or MACH_PORT_DEAD. The right can’t be MACH_PORT_NULL or
MACH_PORT_DEAD.

The argument right_type specifies a right to be inserted and how that right
should be extracted from the caller. It should be a value appropriate for msgt_-
name; see mach_msg.

If right_type is MACH_MSG_TYPE_MAKE_SEND, MACH_MSG_TYPE_-
MOVE_SEND, or MACH_MSG_TYPE_COPY_SEND, then a send right is in-
serted. If the target already holds send or receive rights for the port, then name
should denote those rights in the target. Otherwise, name should be unused in
the target. If the target already has send rights, then those send rights gain an ad-
ditional user reference. Otherwise, the target gains a send right, with a user refer-
ence count of one.

If right_type is MACH_MSG_TYPE_MAKE_SEND_ONCE or MACH_MSG_-
TYPE_MOVE_SEND_ONCE, then a send-once right is inserted. The name
should be unused in the target. The target gains a send-once right.

If right_type is MACH_MSG_TYPE_MOVE_RECEIVE, then a receive right is
inserted. If the target already holds send rights for the port, then name should de-
note those rights in the target. Otherwise, name should be unused in the target.
The receive right is moved into the target task.

PARAMETERS

task
[in scalar] The task which gets the caller’s right.

50 Mach 3 Kernel Interfaces

Port Manipulation Interface

name
[in scalar] The name by which task will know the right.

right
[in scalar] The port right.

right_type
[in scalar] IPC type of the sent right; e.g., MACH_MSG_TYPE_-
COPY_SEND or MACH_MSG_TYPE_MOVE_RECEIVE.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_VALUE
name was MACH_PORT_NULL or MACH_PORT_DEAD.

KERN_NAME_EXISTS
name already denoted a right.

KERN_INVALID_VALUE
right was not a port right.

KERN_INVALID_CAPABILITY
right was null or dead.

KERN_UREFS_OVERFLOW
Inserting the right would overflow name’s user-reference count.

KERN_RIGHT_EXISTS
task already had rights for the port, with a different name.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION

Functions: mach_port_extract_right, mach_msg.

Mach 3 Kernel Interfaces 51

mach_port_mod_refs

mach_port_mod_refs

Function — Changes the number of user refs for a right

SYNOPSIS

kern_return_t mach_port_mod_refs
(mach_port_t task,
mach_port_t name,
mach_port_right_t right,
mach_port_delta_t delta);

DESCRIPTION
The mach_port_mod_refs function requests that the number of user references
a task has for a right be changed. This results in the right being destroyed, if the
number of user references is changed to zero.

The name should denote the specified right. The number of user references for
the right is changed by the amount delta, subject to the following restrictions:
port sets, receive rights, and send-once rights may only have one user reference.
The resulting number of user references can’t be negative. If the resulting num-
ber of user references is zero, the effect is to de-allocate the right. For dead
names and send rights, there is an implementation-defined maximum number of
user references.

If the call destroys the right, then the effect is as described for mach_port_de-
stroy, with the exception that mach_port_destroy simultaneously destroys all
the rights denoted by a name, while mach_port_mod_refs can only destroy
one right. The name will be available for reuse if it only denoted the one right.

PARAMETERS

task
[in scalar] The task holding the right.

name
[in scalar] The task’s name for the right.

right
[in scalar] The type of right / entity being modified: MACH_POR-
T_RIGHT_SEND, MACH_PORT_RIGHT_RECEIVE, MACH_POR-
T_RIGHT_SEND_ONCE, MACH_PORT_RIGHT_PORT_SET or
MACH_PORT_RIGHT_DEAD_NAME.

delta
[in scalar] Signed change to the number of user references.

52 Mach 3 Kernel Interfaces

Port Manipulation Interface

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_VALUE
right was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not the specified right.

KERN_INVALID_VALUE
The user-reference count would become negative.

KERN_UREFS_OVERFLOW
The user-reference count would overflow.

RELATED INFORMATION
Functions: mach_port_destroy, mach_port_get_refs.

Mach 3 Kernel Interfaces 53

mach_port_move_member

mach_port_move_member

Function — Moves a receive right into/out of a port set

SYNOPSIS

kern_return_t mach_port_move_member
(mach_port_t task,
mach_port_t member,
mach_port_t after);

DESCRIPTION
The mach_port_move_member function moves a receive right into a port set.
If the receive right is already a member of another port set, it is removed from
that set first. If the port set is MACH_PORT_NULL, then the receive right is
not put into a port set, but removed from its current port set.

PARAMETERS

task
[in scalar] The task holding the port set and receive right.

member
[in scalar] The task’s name for the receive right.

after
[in scalar] The task’s name for the port set.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
member did not denote a right.

KERN_INVALID_RIGHT
member denoted a right, but not a receive right.

KERN_INVALID_NAME
after did not denote a right.

54 Mach 3 Kernel Interfaces

Port Manipulation Interface

KERN_INVALID_RIGHT
after denoted a right, but not a port set.

KERN_NOT_IN_SET
after was MACH_PORT_NULL, but member wasn’t currently in a
port set.

RELATED INFORMATION
Functions: mach_port_get_set_status, mach_port_get_receive_status.

Mach 3 Kernel Interfaces 55

mach_port_names

mach_port_names

Function — Return information about a task’s port name space

SYNOPSIS

kern_return_t mach_port_names
(mach_port_t task,
mach_port_array_t* names,
mach_msg_type_number_t* ncount,
mach_port_type_array_t* types,
mach_msg_type_number_t* tcount);

DESCRIPTION
The mach_port_names returns information about task’s port name space. It re-
turns task’s currently active names, which represent some port, port set, or dead
name right. For each name, it also returns what type of rights task holds (the
same information returned by mach_port_type).

PARAMETERS

task
[in scalar] The task whose port name space is queried.

names
[out pointer to dynamic array of mach_port_t] The names of the ports,
port sets, and dead names in the task’s port name space, in no particu-
lar order.

ncount
[out scalar] The number of names returned.

types
[out pointer to dynamic array of mach_port_type_t] The type of each
corresponding name. Indicates what kind of rights the task holds with
that name.

tcount
[out scalar] Should be the same as ncount.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

56 Mach 3 Kernel Interfaces

Port Manipulation Interface

KERN_INVALID_TASK
task was invalid.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION
Functions: mach_port_type, vm_deallocate.

Mach 3 Kernel Interfaces 57

mach_port_rename

mach_port_rename

Function — Change a task’s name for a right

SYNOPSIS

kern_return_t mach_port_rename
(mach_port_t task,
mach_port_t old_name,
mach_port_t new_name);

DESCRIPTION
The mach_port_rename function changes the name by which a port, port set,
or dead name is known to task. new_name must not already be in use, and it
can’t be the distinguished values MACH_PORT_NULL and MACH_-
PORT_DEAD.

PARAMETERS

task
[in scalar] The task holding the port right.

old_name
[in scalar] The original name of the port right.

new_name
[in scalar] The new name for the port right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
old_name did not denote a right.

KERN_INVALID_VALUE
new_name was MACH_PORT_NULL or MACH_PORT_DEAD.

KERN_NAME_EXISTS
new_name already denoted a right.

58 Mach 3 Kernel Interfaces

Port Manipulation Interface

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION
Functions: mach_port_names.

Mach 3 Kernel Interfaces 59

mach_port_request_notification

mach_port_request_notification

Function — Request a notification of a port event

SYNOPSIS

kern_return_t mach_port_request_notification
(mach_port_t task,
mach_port_t name,
mach_msg_id_t variant,
mach_port_mscount_t sync,
mach_port_t notify,
mach_msg_type_name_t notify_type,
mach_port_t* previous);

DESCRIPTION
The mach_port_request_notification function registers a request for a notifica-
tion and supplies a send-once right that the notification will use. It is an atomic
swap, returning the previously registered send-once right (or MACH_PORT_-
NULL for none). A notification request may be cancelled by providing MACH_-
PORT_NULL.

The variant argument takes the following values:

MACH_NOTIFY_PORT_DESTROYED
sync must be zero. The name must specify a receive right, and the call
requests a port-destroyed notification for the receive right. If the re-
ceive right were to have been destroyed, say by mach_port_destroy,
then instead the receive right will be sent in a port-destroyed notifica-
tion to the registered send-once right.

(Note: This feature is currently planned for deletion.)

MACH_NOTIFY_DEAD_NAME
The call requests a dead-name notification. name specifies send, re-
ceive, or send-once rights for a port. If the port is destroyed (and the
right remains, becoming a dead name), then a dead-name notification
which carries the name of the right will be sent to the registered send-
once right. If sync is non-zero, the name may specify a dead name, and
a dead-name notification is immediately generated.

Whenever a dead-name notification is generated, the user reference
count of the dead name is incremented. For example, a send right with
two user refs has a registered dead-name request. If the port is de-
stroyed, the send right turns into a dead name with three user refs (in-
stead of two), and a dead-name notification is generated.

60 Mach 3 Kernel Interfaces

Port Manipulation Interface

If the name is made available for reuse, perhaps because of mach_-
port_destroy or mach_port_mod_refs, or the name denotes a send-
once right which has a message sent to it, then the registered send-once
right is used to generate a port-deleted notification instead.

MACH_NOTIFY_NO_SENDERS
The call requests a no-senders notification. name must specify a re-
ceive right. If the receive right’s make-send count is greater than or
equal to the sync value, and it has no extant send rights, than an imme-
diate no-senders notification is generated. Otherwise the notification is
generated when the receive right next loses its last extant send right. In
either case, any previously registered send-once right is returned.

The no-senders notification carries the value the port’s make-send
count had when it was generated. The make-send count is incremented
whenever MACH_MSG_TYPE_MAKE_SEND is used to create a new
send right from the receive right. The make-send count is reset to zero
when the receive right is carried in a message.

(Note: Currently, moving a receive right does not affect any extant no-
senders notifications. It is currently planned to change this so that no-
senders notifications are canceled, with a send-once notification sent to
indicate the cancelation.)

PARAMETERS

task
[in scalar] The task holding the specified right.

name
[in scalar] The task’s name for the right.

variant
[in scalar] The type of notification.

sync
[in scalar] Some variants use this value to overcome race conditions.

notify
[in scalar] A send-once right, to which the notification will be sent.

notify_type
[in scalar] IPC type of the sent right; either MACH_MSG_TYPE_-
MAKE_SEND_ONCE or MACH_MSG_TYPE_MOVE_SEN-
D_ONCE.

previous
[out scalar] The previously registered send-once right.

Mach 3 Kernel Interfaces 61

mach_port_request_notification

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_VALUE
variant was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted an invalid right.

KERN_INVALID_CAPABILITY
notify was invalid.

When using MACH_NOTIFY_PORT_DESTROYED:

KERN_INVALID_VALUE
sync was not zero.

When using MACH_NOTIFY_DEAD_NAME:

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

KERN_INVALID_ARGUMENT
name denotes a dead name, but sync is zero or notify is null.

KERN_UREFS_OVERFLOW
name denotes a dead name, but generating an immediate dead-name
notification would overflow the name’s user-reference count.

RELATED INFORMATION
Functions: mach_port_get_receive_status.

62 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_set_mscount

Function — Changes the make-send count of a port

SYNOPSIS

kern_return_t mach_port_set_mscount
(mach_port_t task,
mach_port_t name,
mach_port_mscount_t mscount);

DESCRIPTION
The mach_port_set_mscount function changes the make-send count of task’s
receive right named name. All values for mscount are valid.

PARAMETERS

task
[in scalar] The task owning the receive right.

name
[in scalar] task’s name for the receive right.

mscount
[in scalar] New value for the make-send count for the receive right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a receive right.

RELATED INFORMATION
Functions: mach_port_get_receive_status, mach_port_set_qlimit.

Mach 3 Kernel Interfaces 63

mach_port_set_qlimit

mach_port_set_qlimit

Function — Changes the queue limit of a port

SYNOPSIS

kern_return_t mach_port_set_qlimit
(mach_port_t task,
mach_port_t name,
mach_port_msgcount_t qlimit);

DESCRIPTION
The mach_port_set_qlimit function changes the queue limit of task’s receive
right named name. Valid values for qlimit are between zero and MACH_-
PORT_QLIMIT_MAX (defined in mach.h), inclusive.

PARAMETERS

task
[in scalar] The task owning the receive right.

name
[in scalar] task’s name for the receive right.

qlimit
[in scalar] The number of messages which may be queued to this port
without causing the sender to block.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a receive right.

KERN_INVALID_VALUE
qlimit was invalid.

64 Mach 3 Kernel Interfaces

Port Manipulation Interface

RELATED INFORMATION
Functions: mach_port_get_receive_status, mach_port_set_mscount.

Mach 3 Kernel Interfaces 65

mach_port_set_seqno

mach_port_set_seqno

Function — Changes the sequence number of a port

SYNOPSIS

kern_return_t mach_port_set_seqno
(mach_port_t task,
mach_port_t name,
mach_port_seqno_t seqno);

DESCRIPTION
The mach_port_set_seqno function changes the sequence number of task’s re-
ceive right named name.

PARAMETERS

task
[in scalar] The task owning the receive right.

name
[in scalar] task’s name for the receive right.

seqno
[in scalar] The sequence number that the next message received from
the port will have.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a receive right.

RELATED INFORMATION
Functions: mach_port_get_receive_status

66 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_type

Function — Return information about a task’s port name

SYNOPSIS

kern_return_t mach_port_type
(mach_port_t task,
mach_port_t name,
mach_port_type_t* ptype);

DESCRIPTION
The mach_port_type function returns information about task’s rights for a spe-
cific name in its port name space. The returned ptype is a bit-mask indicating
what rights task holds with this name. The bit-mask is composed of the follow-
ing bits:

MACH_PORT_TYPE_SEND
The name denotes a send right.

MACH_PORT_TYPE_RECEIVE
The name denotes a receive right.

MACH_PORT_TYPE_SEND_ONCE
The name denotes a send-once right.

MACH_PORT_TYPE_PORT_SET
The name denotes a port set.

MACH_PORT_TYPE_DEAD_NAME
The name is a dead name.

MACH_PORT_TYPE_DNREQUEST
A dead-name request has been registered for the right.

MACH_PORT_TYPE_MAREQUEST
A msg-accepted request for the right is pending. (Note: This feature is
planned for deletion.)

MACH_PORT_TYPE_COMPAT
The port right was created in the compatibility mode.

PARAMETERS

task
[in scalar] The task whose port name space is queried.

Mach 3 Kernel Interfaces 67

mach_port_type

name
[in scalar] The name being queried.

ptype
[out scalar] The type of the name. Indicates what kind of right the task
holds for the port, port set, or dead name.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
task was invalid.

KERN_INVALID_NAME
name did not denote a right.

RELATED INFORMATION
Functions: mach_port_names, mach_port_get_receive_status, mach_port_-
get_set_status.

68 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_ports_lookup

Function — Returns an array of well-known system ports.

SYNOPSIS

kern_return_t mach_ports_lookup
(mach_port_t target_task,
mach_port_array_t* init_port_set,
mach_msg_type_number_t* init_port_count);

DESCRIPTION
The mach_ports_lookup function returns an array of the well-known system
ports that are currently registered for the specified task. Note that the task holds
only send rights for the ports.

Registered ports are those ports that are used by the run-time system to initialize
a task. To register system ports for a task, use the mach_ports_register func-
tion.

PARAMETERS

target_task
[in scalar] The task whose currently registered ports are to be returned.

init_port_set
[out pointer to dynamic array of mach_port_t] The returned array of
ports.

init_port_count
[out scalar] The number of ports in the array.

RETURN VALUE

KERN_SUCCESS
The array of registered ports has been returned.

RELATED INFORMATION
Functions: mach_ports_register.

Mach 3 Kernel Interfaces 69

mach_ports_register

mach_ports_register

Function — Registers an array of well-known system ports

SYNOPSIS

kern_return_t mach_ports_register
(mach_port_t target_task,
mach_port_array_t init_port_set,
mach_msg_type_number_t init_port_array_count);

DESCRIPTION
The mach_ports_register function registers an array of well-known system
ports for the specified task. The task holds only send rights for the registered
ports. The valid well-known system ports are:

• The port for the Network Name Server.

• The port for the Environment Manager.

• The port for the Service server.

Each port must be placed in a specific slot in the array. The slot numbers are de-
fined (in mach.h) by the global constants NAME_SERVER_SLOT, ENVIRON-
MENT_SLOT, and SERVICE_SLOT.

A task can retrieve the currently registered ports by using the mach_ports_look-
up function.

PARAMETERS

target_task
[in scalar] The task for which the ports are to be registered.

init_port_set
[in pointer to array of mach_port_t] The array of ports to register.

init_port_array_count
[in scalar] The number of ports in the array. Note that while this is a
variable, the kernel accepts only a limited number of ports. The maxi-
mum number of ports is defined by the global constant MACH_-
PORT_SLOTS_USED.

NOTES
When a new task is created (with task_create), the child task can inherit the par-
ent’s registered ports. Note that child tasks do not automatically acquire rights
to these ports. They must use mach_ports_lookup to get them. It is intended

70 Mach 3 Kernel Interfaces

Port Manipulation Interface

that port registration be used only for task initialization, and then only by run-
time support modules.

A parent task has three choices when passing registered ports to child tasks:

• The parent task can do nothing. In this case, all child tasks inherit access to
the same ports that the parent has.

• The parent task can use mach_ports_register to modify its set of registered
ports before creating child tasks. In this case, the child tasks get access to the
modified set of ports. After creating its child tasks. the parent can use
mach_ports_register again to reset its registered ports.

• The parent task can first create a specific child task and then use mach_-
ports_register to modify the child’s inherited set of ports, before starting the
child’s thread(s). The parent must specify the child’s task port, rather than its
own, on the call to mach_ports_register.

Tasks other than the Network Name Server and the Environment Manager
should not need access to the Service port. The Network Name Server port is
the same for all tasks on a given machine. The Environment port is the only port
likely to have different values for different tasks.

Registered ports are restricted to those ports that are used by the run-time sys-
tem to initialize a task. A parent task can pass other ports to its child tasks
through:

• An initial message (see mach_msg).

• The Network Name Server, for public ports.

• The Environment Manager, for private ports.

RETURN VALUE

KERN_SUCCESS
The ports have been registered for the task.

KERN_INVALID_ARGUMENT
The number of ports exceeds the allowed maximum.

RELATED INFORMATION
Functions: mach_msg, mach_ports_lookup.

Mach 3 Kernel Interfaces 71

mach_reply_port

mach_reply_port

System Trap— Creates a port for the task

LIBRARY
#include <mach/mach_traps.h>

SYNOPSIS

mach_port_t mach_reply_port
();

DESCRIPTION
The mach_reply_port function creates a new port for the current task and re-
turns the name assigned by the kernel. The kernel records the name in the task’s
port name space and grants the task receive rights for the port. The new port is
not a member of any port set.

This function is an optimized version of mach_port_allocate that uses no port
references. Its main purpose is to allocate a reply port for the task when the task
is starting— namely, before it has any ports to use as reply ports for any IPC
based system functions.

PARAMETERS
None

CAUTIONS
Although the created port can be used for any purpose, the implementation may
optimize its use as a reply port.

RETURN VALUE

MACH_PORT_NULL
No port was allocated. Any other value indicates success.

RELATED INFORMATION
Functions: mach_port_allocate.

72 Mach 3 Kernel Interfaces

Port Manipulation Interface

Mach 3 Kernel Interfaces 73

CHAPTER 4 Virtual Memory Interface

This chapter discusses the specifics of the kernel’s virtual memory interfaces. This in-
cludes memory status related functions associated with a single task. Functions that are
related to, or used by, external memory managers (pagers) are described in the next chap-
ter.

74 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_allocate

Function — Allocates a region of virtual memory

SYNOPSIS

kern_return_t vm_allocate
(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
boolean_t anywhere);

DESCRIPTION
The vm_allocate function allocates a region of virtual memory in the specified
task’s address space. A new region is always zero filled. The physical memory
is not allocated until an executing thread references the new virtual memory.

If anywhere is true, the returned address will be at a page boundary and size
will be rounded up to an integral number of pages. Otherwise, the region starts
at the beginning of the virtual page containing address; it ends at the end of the
virtual page containing address + size - 1. Because of this rounding to virtual
page boundaries, the amount of memory allocated may be greater than size. Use
vm_statistics to find the current virtual page size.

Use the mach_task_self function to return the caller’s value for target_task.
This macro returns the task kernel port for the caller.

Initially, there are no access restrictions on any of the pages of the newly allocat-
ed region. Child tasks inherit the new region as a copy.

To establish different protections for the new region, use the vm_protect and
vm_inherit functions.

PARAMETERS

target_task
[in scalar] The task in whose address space the region is to be allocated.

address
[pointer to in/out scalar] The starting address for the region. If there is
not enough room following the address, the kernel does not allocate
the region. The kernel returns the starting address actually used for the
allocated region.

size
[in scalar] The number of bytes to allocate.

Mach 3 Kernel Interfaces 75

vm_allocate

anywhere
[in scalar] Placement indicator. If false, the kernel allocates the region
starting at address. If true, the kernel allocates the region wherever
enough space is available within the address space. The kernel returns
the starting address actually used in address.

NOTES
For languages other than C, use the vm_statistics and mach_task_self func-
tions to return the task’s kernel port (for target_task).

A region is a continuous range of addresses bounded by a start address and an
end address. Regions consist of pages that have different protection or inherit-
ance characteristics.

A task’s address space can contain both explicitly allocated memory and auto-
matically allocated memory. The vm_allocate function explicitly allocates
memory. The kernel automatically allocates memory to hold out-of-line data
passed in a message (and received with mach_msg). The kernel allocates mem-
ory for the passed data as an integral number of pages.

RETURN VALUE

KERN_SUCCESS
The new region has been allocated.

KERN_INVALID_ADDRESS
The specified address is illegal.

KERN_NO_SPACE
There is not enough space in the task’s address space to allocate the
new region.

RELATED INFORMATION
Functions: task_get_special_port, vm_deallocate, vm_inherit , vm_protect,
vm_region, vm_statistics.

76 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_copy

Function — Copies a region in a task’s virtual memory

SYNOPSIS

kern_return_t vm_copy
(mach_port_t target_task,
vm_address_t source_address,
vm_size_t count,
vm_address_t dest_address);

DESCRIPTION
The vm_copy function copies a source region to a destination region within a
task’s virtual memory. It is equivalent to vm_read followed by vm_write. The
destination region can overlap the source region.

The destination region must already be allocated. The source region must be
readable, and the destination region must be writable.

PARAMETERS

target_task
[in scalar] The task whose memory is to be copied.

source_address
[in scalar] The starting address for the source region. The address must
be on a page boundary.

count
[in scalar] The number of bytes in the source region. The number of
bytes must convert to an integral number of virtual pages.

dest_address
[in scalar] The starting address for the destination region. The address
must be on a page boundary.

RETURN VALUE

KERN_SUCCESS
The memory region has been copied.

KERN_INVALID_ARGUMENT
Either an address does not start on a page boundary or the count does
not convert to an integral number of pages.

Mach 3 Kernel Interfaces 77

vm_copy

KERN_PROTECTION_FAILURE
The source region is protected against reading, or the destination re-
gion is protected against writing.

KERN_INVALID_ADDRESS
An address is illegal or specifies a non-allocated region, or there is not
enough memory following one of the addresses.

RELATED INFORMATION
Functions: vm_protect, vm_read, vm_write, vm_statistics.

78 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_deallocate

Function — De-allocates a region of virtual memory

SYNOPSIS

kern_return_t vm_deallocate
(mach_port_t target_task,
vm_address_t address,
vm_size_t size);

DESCRIPTION
The vm_deallocate function de-allocates a region of virtual memory in the spec-
ified task’s address space.

The region starts at the beginning of the virtual page containing address; it ends
at the end of the virtual page containing address + size - 1. Because of this
rounding to virtual page boundaries, the amount of memory de-allocated may
be greater than size. Use vm_statistics to find the current virtual page size.

vm_deallocate can be used to de-allocate memory passed as out-of-line data in
a message.

vm_deallocate affects only target_task. Other tasks that have access to the de-
allocated memory can continue to reference it.

PARAMETERS

target_task
[in scalar] The task in whose address space the region is to be de-allo-
cated.

address
[in scalar] The starting address for the region.

size
[in scalar] The number of bytes to de-allocate.

RETURN VALUE

KERN_SUCCESS
The region has been de-allocated.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

Mach 3 Kernel Interfaces 79

vm_deallocate

RELATED INFORMATION
Functions: mach_msg, vm_allocate, vm_statistics.

80 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_inherit

Function — Sets the inheritance attribute for a region of virtual memory

SYNOPSIS

kern_return_t vm_inherit
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_inherit_t new_inheritance);

DESCRIPTION
The vm_inherit function sets the inheritance attribute for a region within the
specified task’s address space. The inheritance attribute determines the type of
access established for child tasks at task creation

Because inheritance applies to virtual pages, the specified address and size are
rounded to page boundaries, as follows: the region starts at the beginning of the
virtual page containing address; it ends at the end of the virtual page containing
address + size - 1. Because of this rounding to virtual page boundaries, the
amount of memory affected may be greater than size. Use vm_statistics to find
the current virtual page size.

A parent and a child task can share the same physical memory only if the inher-
itance for the memory is set to VM_INHERIT_SHARE before the child task is
created. This is the only way that two tasks can share memory (other than
through the use of an external memory manager; see vm_map).

Note that all the threads within a task share the task’s memory.

PARAMETERS

target_task
[in scalar] The task whose address space contains the region.

address
[in scalar] The starting address for the region.

size
[in scalar] The number of bytes in the region.

new_inheritance
[in scalar] The new inheritance attribute for the region. Valid values are:

VM_INHERIT_SHARE
Allows child tasks to share the region.

Mach 3 Kernel Interfaces 81

vm_inherit

VM_INHERIT_COPY
Gives child tasks a copy of the region.

VM_INHERIT_NONE
Provides no access to the region for child tasks.

RETURN VALUE

KERN_SUCCESS
The new inheritance has been set for the region.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functions: task_create, vm_map, vm_region.

82 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_machine_attribute

Function — Sets and gets special attributes of a memory region

SYNOPSIS

kern_return_t vm_machine_attribute
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_machine_attribute_t attribute,
vm_machine_attribute_val_t* value);

DESCRIPTION
The vm_machine_attribute function gets and sets special attributes of the
memory region implemented by the implementations underlying pmap module.
These attributes are properties such as cachability, migrability and replicability.
The behavior of this function is machine dependent.

PARAMETERS

target_task
[in scalar] The task in whose address space the memory object is to be
manipulated.

address
[in scalar] The starting address for the memory region. The granularity
of rounding of this value to page boundaries is implementation depen-
dent.

size
[in scalar] The number of bytes in the region. The granularity of round-
ing of this value to page boundaries is implementation dependent.

attribute
[in scalar] The name of the attribute to be get/set. Possible values are:

MATTR_CACHE
Cachability

MATTR_MIGRATE
Migratability

MATTR_REPLICATE
Replicability

Mach 3 Kernel Interfaces 83

vm_machine_attribute

value
[pointer to in/out scalar] The new value for the attribute. The old value
is also returned in this variable.

MATTR_VAL_OFF
(generic) turn attribute off

MATTR_VAL_ON
(generic) turn attribute on

MATTR_VAL_GET
(generic) return current value

MATTR_VAL_CACHE_FLUSH
flush from all caches

MATTR_VAL_DCACHE_FLUSH
flush from data caches

MATTR_VAL_ICACHE_FLUSH
flush from instruction caches

RETURN VALUE

KERN_SUCCESS
The memory object has been modified.

KERN_INVALID_ARGUMENT
An illegal argument was specified.

84 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_map

Function — Maps a memory object to a task’s address space

SYNOPSIS

kern_return_t vm_map
(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
vm_address_t mask,
boolean_t anywhere,
mach_port_t memory_object,
vm_offset_t offset,
boolean_t copy,
vm_prot_t cur_protection,
vm_prot_t max_protection,
vm_inherit_t inheritance);

DESCRIPTION
The vm_map function maps a portion of the specified memory object into the
virtual address space belonging to target_task. The target task can be the calling
task or another task, identified by its task kernel port.

The portion of the memory object mapped is determined by offset and size. The
kernel maps address to the offset, so that an access to the memory starts at the
offset in the object.

The mask parameter specifies additional alignment restrictions on the kernel’s
selection of the starting address. Uses for this mask include:

• Forcing the memory address alignment for a mapping to be the same as the
alignment within the memory object.

• Quickly finding the beginning of an allocated region by performing bit arith-
metic on an address known to be in the region.

• Emulating a larger virtual page size.

The cur_protection, max_protection, and inheritance parameters set the protec-
tion and inheritance attributes for the mapped object. As a rule, at least the maxi-
mum protection should be specified so that a server can make a restricted (for
example, read-only) mapping in a client atomically. The current protection and
inheritance parameters are provided for convenience so that the caller does not
have to call vm_inherit and vm_protect separately.

The same memory object can be mapped in more than once and by more than
one task. If an object is mapped by multiple tasks, the kernel maintains consis-
tency for all the mappings if they use the same page alignment for offset and are

Mach 3 Kernel Interfaces 85

vm_map

on the same host. In this case, the virtual memory to which the object is mapped
is shared by all the tasks. Changes made by one task in its address space are visi-
ble to all the other tasks.

PARAMETERS

target_task
[in scalar] The task to whose address space the memory object is to be
mapped.

address
[pointer to in/out scalar] The starting address for the mapped object. If
the address is not at the beginning of a virtual page, the kernel rounds
it up to the next page boundary. If there is not enough room following
the address, the kernel does not map the object. The kernel returns the
starting address actually used for the mapped object.

size
[in scalar] The number of bytes to allocate for the object. The kernel
rounds this number up to an integral number of virtual pages.

mask
[in scalar] Alignment restrictions for starting address. Bits turned on in
the mask cannot be turned on in the starting address.

anywhere
[in scalar] Placement indicator. If false, the kernel allocates the object’s
region starting at address. If true, the kernel allocates the region any-
where at or following address that there is enough space available with-
in the address space. The kernel returns the starting address actually
used in address.

memory_object
[in scalar] The port naming the abstract memory object. If MEMORY_-
OBJECT_NULL is specified, the kernel allocates zero-filled memory,
as with vm_allocate.

offset
[in scalar] An offset within the memory object, in bytes. The kernel
maps address to the specified offset.

copy
[in scalar] Copy indicator. If true, the kernel copies the region for the
memory object to the specified task’s address space. If false, the region
is mapped read-write.

cur_protection
[in scalar] The initial current protection for the region. Valid values are
obtained by or’ing together the following values:

86 Mach 3 Kernel Interfaces

Virtual Memory Interface

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

max_protection
[in scalar] The maximum protection for the region. Values are the same
as for cur_protection.

inheritance
[in scalar] The initial inheritance attribute for the region. Valid values
are:

VM_INHERIT_SHARE
Allows child tasks to share the region.

VM_INHERIT_COPY
Gives child tasks a copy of the region.

VM_INHERIT_NONE
Provides no access to the region for child tasks.

NOTES
vm_map allocates a region in a task’s address space and maps the specified
memory object to this region. vm_allocate allocates a zero-filled region in a
task’s address space.

Before a memory object can be mapped, a port naming it must be acquired from
the memory manager serving it.

The kernel rounds the starting address up to the next page boundary. Note that
this is different from vm_allocate, in which the starting address is rounded
down to the previous page boundary.

CAUTIONS
Do not attempt to map a memory object unless it has been provided by a memo-
ry manager that implements the memory object interface. If another type of port
is specified, a thread that accesses the mapped virtual memory may become per-
manently hung or may receive a memory exception.

Mach 3 Kernel Interfaces 87

vm_map

RETURN VALUE

KERN_SUCCESS
The memory object has been mapped.

KERN_NO_SPACE
There is not enough space in the task’s address space to allocate the
new region for the memory object.

KERN_INVALID_ARGUMENT
An illegal argument was specified.

RELATED INFORMATION
Functions: memory_object_init, et al., vm_allocate.

88 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_protect

Function — Sets access privileges for a region of virtual memory

SYNOPSIS

kern_return_t vm_protect
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
boolean_t set_maximum,
vm_prot_t new_protection);

DESCRIPTION
The vm_protect function sets access privileges for a region within the specified
task’s address space. new_protection specifies a combination of read, write, and
execute accesses that are allowed (rather than prohibited).

The region starts at the beginning of the virtual page containing address; it ends
at the end of the virtual page containing address + size - 1. Because of this
rounding to virtual page boundaries, the amount of memory protected may be
greater than size. Use vm_statistics to find the current virtual page size.

The enforcement of virtual memory protection is machine-dependent. Nominal-
ly read access requires VM_PROT_READ permission, write access requires
VM_PROT_WRITE permission, and execute access requires VM_PROT_EXE-
CUTE permission. However, some combinations of access rights may not be
supported. In particular, the kernel interface allows write access to require VM_-
PROT_READ and VM_PROT_WRITE permission and execute access to re-
quire VM_PROT_READ permission.

PARAMETERS

target_task
[in scalar] The task whose address space contains the region.

address
[in scalar] The starting address for the region.

size
[in scalar] The number of bytes in the region.

set_maximum
[in scalar] Maximum/current indicator. If true, the new protection sets
the maximum protection for the region. If false, the new protection sets
the current protection for the region. If the maximum protection is set

Mach 3 Kernel Interfaces 89

vm_protect

below the current protection, the current protection is reset to the new
maximum.

new_protection
[in scalar] The new protection for the region. Valid values are obtained
by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE

KERN_SUCCESS
The new protection has been set for the region.

KERN_PROTECTION_FAILURE
The new protection increased the current or maximum protection be-
yond the existing maximum protection.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functions: vm_inherit , vm_region.

90 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_read

Function — Reads a task’s virtual memory

SYNOPSIS

kern_return_t vm_read
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_offset_t* data,
mach_msg_type_number_t* data_count);

DESCRIPTION
The vm_read function reads a portion of a task’s virtual memory. It allows one
task to read another task’s memory.

PARAMETERS

target_task
[in scalar] The task whose memory is to be read.

address
[in scalar] The address at which to start the read. This address must
name a page boundary.

size
[in scalar] The number of bytes to read.

data
[out pointer to dynamic array of bytes] The array of data returned by
the read.

data_count
[out scalar] The number of bytes in the returned array. The count con-
verts to an integral number of pages.

RETURN VALUE

KERN_SUCCESS
The memory has been read.

KERN_INVALID_ARGUMENT
Either the address does not start on a page boundary or the size does
not convert to an integral number of pages.

Mach 3 Kernel Interfaces 91

vm_read

KERN_NO_SPACE
There is not enough room in the calling task’s address space to allocate
the region for the returned data.

KERN_PROTECTION_FAILURE
The specified region in the target task is protected against reading.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region, or there are
less than size bytes of data following the address.

RELATED INFORMATION
Functions: vm_copy, vm_deallocate, vm_write.

92 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_region

Function — Returns information on a region of virtual memory

SYNOPSIS

kern_return_t vm_region
(mach_port_t target_task,
vm_address_t* address,
vm_size_t* size,
vm_prot_t* protection,
vm_prot_t* max_protection,
vm_inherit_t* inheritance,
boolean_t* shared,
mach_port_t* object_name,
vm_offset_t* offset);

DESCRIPTION
The vm_region function returns information on a region within the specified
task’s address space.

The function begins looking at address and continues until it finds an allocated
region. If the input address is within a region, the function uses the start of that
region. The starting address for the located region is returned in address.

PARAMETERS

target_task
[in scalar] The task whose address space contains the region.

address
[pointer to in/out scalar] The address at which to start looking for a re-
gion. The function returns the starting address actually used.

size
[out scalar] The number of bytes in the located region. The number
converts to an integral number of virtual pages.

protection
[out scalar] The current protection for the region.

max_protection
[out scalar] The maximum protection allowed for the region.

inheritance
[out scalar] The inheritance attribute for the region.

Mach 3 Kernel Interfaces 93

vm_region

shared
[out scalar] Shared indicator. If true, the region is shared by another
task. If false, the region is not shared.

object_name
[out scalar] The name of a send right to the name port for the memory
object associated with the region. See memory_object_init.

offset
[out scalar] The region’s offset into the memory object. The region be-
gins at this offset.

RETURN VALUE

KERN_SUCCESS
A region has been located and its information returned.

KERN_NO_SPACE
There is no region at or beyond the specified starting address.

RELATED INFORMATION
Functions: vm_allocate, vm_deallocate, vm_inherit , vm_protect, memory_-
object_init, et al.

94 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_statistics

Function — Returns statistics on the kernel’s use of virtual memory

SYNOPSIS

kern_return_t vm_statistics
(mach_port_t target_task,
vm_statistics_data_t* vm_stats);

DESCRIPTION
The vm_statistics function returns statistics on the kernel’s use of virtual memo-
ry from the time the kernel was booted.

See vm_statistics for a description of the structure used.

For related information for a specific task, use task_info.

PARAMETERS

target_task
[in scalar] The task that is requesting the statistics.

vm_stats
[out structure] The structure in which the statistics will be returned.

RETURN VALUE

KERN_SUCCESS
The statistics have been returned.

KERN_INVALID_HOST
The host is null.

KERN_RESOURCE_SHORTAGE
The kernel could not allocate sufficient memory.

RELATED INFORMATION
Functions: task_info.

Data Structures: vm_statistics.

Mach 3 Kernel Interfaces 95

vm_wire

vm_wire

Function — Specifies the pageability of a region of virtual memory

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t vm_wire
(mach_port_t host_priv,
mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_prot_t wired_access);

DESCRIPTION
The vm_wire function sets the pageability privileges for a region within the
specified task’s address space. wired_access specifies an access attribute which
is interpreted to specify whether the region can be paged.

The region starts at the beginning of the virtual page containing address; it ends
at the end of the virtual page containing address + size - 1. Because of this
rounding to virtual page boundaries, the amount of memory affected may be
greater than size. Use vm_statistics to find the current virtual page size.

This call is directed to the privileged host port on which target_task executes be-
cause of the privileged nature of committing physical memory.

PARAMETERS

host_priv
[in scalar] The host control port for the host on which target_task exe-
cutes.

target_task
[in scalar] The task whose address space contains the region.

address
[in scalar] The starting address for the region.

size
[in scalar] The number of bytes in the region.

wired_access
[in scalar] The pageability of the region. Valid values are:

96 Mach 3 Kernel Interfaces

Virtual Memory Interface

VM_PROT_NONE
Un-wire (allow to be paged) the region of memory.

Any other value specifies that the region is to be wired and that the tar-
get task must have at least the specified amount of access to the region.

RETURN VALUE

KERN_SUCCESS
The new pageability has been set for the region.

KERN_INVALID_HOST
The privileged host port was not specified.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

KERN_INVALID_VALUE
An invalid value for wired_access was specified.

RELATED INFORMATION
Functions: thread_wire.

Mach 3 Kernel Interfaces 97

vm_write

vm_write

Function — Writes data to a task’s virtual memory

SYNOPSIS

kern_return_t vm_write
(mach_port_t target_task,
vm_address_t address,
vm_offset_t data,
mach_msg_type_number_t data_count);

DESCRIPTION
The vm_write function writes an array of data to a task’s virtual memory. It al-
lows one task to write to another task’s memory.

Use vm_statistics to find the current virtual page size.

PARAMETERS

target_task
[in scalar] The task whose memory is to be written.

address
[in scalar] The address at which to start the write. The starting address
must be on a page boundary.

data
[in pointer to page aligned array of bytes] An array of data to be writ-
ten.

data_count
[in scalar] The number of bytes in the array. The size of the array must
convert to an integral number of pages.

RETURN VALUE

KERN_SUCCESS
The memory has been written.

KERN_INVALID_ARGUMENT
Either the address does not start on a page boundary or data_count
does not convert to an integral number of pages.

KERN_PROTECTION_FAILURE
The specified region in the target task is protected against writing.

98 Mach 3 Kernel Interfaces

Virtual Memory Interface

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region, or there are
less than data_count bytes available following the address.

RELATED INFORMATION
Functions: vm_copy, vm_protect, vm_read, vm_statistics.

Mach 3 Kernel Interfaces 99

CHAPTER 5 External Memory
Management Interface

This chapter discusses the specifics of the kernel’s external memory management inter-
faces. Interfaces that relate to the basic use of virtual memory for a task appear in the pre-
vious chapter.

100 Mach 3 Kernel Interfaces

External Memory Management Interface

default_pager_info

Function —Return default partition information

LIBRARY
libmach.a only

#include <mach/default_pager_object.h>

SYNOPSIS

kern_return_t default_pager_info
(mach_port_t pager,
vm_size_t* total,
vm_size_t* free);

DESCRIPTION
The default_pager_info function returns information concerning the default
pager’s default paging partition.

The default memory manager port can be obtained by calling vm_set_default_-
memory_manager with the host control port, specifying the “new” pager port
as MACH_PORT_NULL.

PARAMETERS

pager
[in scalar] A port to the default memory manager.

total
[out scalar] Total size of the default partition.

free
[out scalar] Free space in the default partition.

RETURN VALUE

KERN_SUCCESS
Information returned.

RELATED INFORMATION
Functions: vm_set_default_memory_manager.

Mach 3 Kernel Interfaces 101

default_pager_object_create

default_pager_object_create

Function — Create a memory object managed by the default pager

LIBRARY
libmach.a only

#include <mach/default_pager_object.h>

SYNOPSIS

kern_return_t default_pager_object_create
(mach_port_t pager,
memory_object_t* memory_object,
vm_size_t object_size);

DESCRIPTION
The default_pager_object_create function returns an object, backed by the de-
fault pager, which is suitable for use with vm_map. This memory object has the
same properties as does a memory object provided by vm_allocate: its initial
contents are zero and the backing contents are temporary in that they do not per-
sist after the memory object is destroyed. The memory object is suitable for use
as non-permanent shared memory.

The default memory manager port can be obtained by calling vm_set_default_-
memory_manager with the host control port, specifying the “new” pager port
as MACH_PORT_NULL.

PARAMETERS

pager
[in scalar] A port to the default memory manager.

memory_object
[out scalar] The abstract memory object port for the memory object.

object_size
[in scalar] The maximum size for the memory object.

RETURN VALUE

KERN_SUCCESS
Memory object created.

102 Mach 3 Kernel Interfaces

External Memory Management Interface

RELATED INFORMATION
Functions: vm_map, vm_set_default_memory_manager.

Mach 3 Kernel Interfaces 103

memory_object_change_attributes

memory_object_change_attributes

Function — Changes various performance related attributes

SYNOPSIS

kern_return_t memory_object_change_attributes
(mach_port_t memory_control,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy,
mach_port_t reply_to);

DESCRIPTION
The memory_object_change_attributes function sets various performance-re-
lated attributes for the specified memory object, so as to:

• Retain data from a memory object even after all address space mappings
have been de-allocated (may_cache_object parameter).

• Perform optimizations for virtual memory copy operations (copy_strategy
parameter).

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object’s
data. Normally, the kernel requests each page with read ac-
cess, copies the data, and then (optionally) flushes the data.

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (via memory_object_copy) be-
fore copying any data.

104 Mach 3 Kernel Interfaces

External Memory Management Interface

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

reply_port
[in scalar] A port to which a reply (memory_object_change_complet-
ed) is to be sent indicating the completion of the attribute change. Such
a reply would be useful if the cache attribute is turned off, since such a
change, if the memory object is no longer mapped, may result in the
object being terminated, or if the copy strategy is changed, which may
result in additional page requests.

NOTES
Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly by different programs. By retaining the data
for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_change_completed, memory_object_copy, mem-
ory_object_get_attributes, memory_object_ready, memory_object_set_at-
tributes (old form).

Mach 3 Kernel Interfaces 105

memory_object_change_completed

memory_object_change_completed

Server Interface — Indicates completion of an attribute change call

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_change_completed
(mach_port_t memory_object,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy);

DESCRIPTION
A memory_object_change_completed function is called as the result of a ker-
nel message confirming the kernel’s action in response to a memory_ob-
ject_change_attributescall from the memory manager.

When the kernel completes the requested changes, it calls memory_ob-
ject_change_completed (asynchronously) using the port explicitly provided in
the memory_object_change_attributes call. A response is generated so that
the manager can synchronize with changes to the copy strategy (which affects
the manner in which pages will be requested) and a termination message possi-
bly resulting from un-cacheing a not-mapped object.

SEQUENCE NUMBER FORM
seqnos_memory_object_change_completed

kern_return_t seqnos_memory_object_change_completed
(mach_port_t memory_object,
mach_port_seqno_t seqno,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy);

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

seqno
[in scalar] The sequence number of this message relative to the port
named in the memory_object_change_attributes call.

106 Mach 3 Kernel Interfaces

External Memory Management Interface

may_cache_object
[in scalar] The new cache attribute.

copy_strategy
[in scalar] The new copy strategy.

NOTES
No memory cache control port is supplied in this call because the attribute
change may cause termination of the object leading to what would be an invalid
cache port.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_server, se-
qnos_memory_object_server.

Mach 3 Kernel Interfaces 107

memory_object_copy

memory_object_copy

Server Interface — Indicates that a memory object has been copied

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_copy
(mach_port_t old_memory_object,
memory_object_control_t old_memory_control,
vm_offset_t offset,
vm_size_t length,
mach_port_t new_memory_object);

DESCRIPTION
A memory_object_copy function is called as the result of a message from the
kernel indicating that the kernel has copied the specified region within the old
memory object.

This call includes only the new abstract memory object port itself. The kernel
will subsequently issue a memory_object_init call on the new abstract memory
object after it has prepared the currently cached pages of the old object. When
the memory manager receives the memory_object_init call, it is expected to re-
ply with the memory_object_ready call. The kernel uses the new abstract mem-
ory object, memory cache control, and memory cache name ports to refer to the
new copy.

The kernel makes the memory_object_copy call only if:

• The memory manager had previously set the old object’s copy strategy at-
tribute to MEMORY_OBJECT_COPY_CALL (using memory_ob-
ject_change_attributes or memory_object_ready).

• A user of the old object has asked the kernel to copy it.

Cached pages from the old memory object at the time of the copy are handled
as follows:

• Readable pages may be copied to the new object without notification and
with all access permissions.

• Pages not copied are locked to prevent write access.

The memory manager should treat the new memory object as temporary. In oth-
er words, the memory manager should not change the new object’s contents or
allow it to be mapped in another client. The memory manager can use the mem-

108 Mach 3 Kernel Interfaces

External Memory Management Interface

ory_object_data_unavailable call to indicate that the appropriate pages of the
old object can be used to fulfill a data request.

SEQUENCE NUMBER FORM
seqnos_memory_object_copy

kern_return_t seqnos_memory_object_copy
(mach_port_t old_memory_object,
mach_port_seqno_t seqno,
memory_object_control_t old_memory_control,
vm_offset_t offset,
vm_size_t length,
mach_port_t new_memory_object);

PARAMETERS

old_memory_object
[in scalar] The port that represents the old (copied from) abstract mem-
ory object.

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

old_memory_control
[in scalar] The kernel memory cache control port for the old memory
object.

offset
[in scalar] The offset within the old memory object.

length
[in scalar] The number of bytes copied, starting at offset. The number
converts to an integral number of virtual pages.

new_memory_object
[in scalar] The new abstract memory object created by the kernel. The
kernel provides all port rights (including the receive right) for the new
memory object.

NOTES
It is possible for a memory manager to receive a memory_object_data_return
message for a page of the new memory object before receiving any other re-
quests for that data.

Mach 3 Kernel Interfaces 109

memory_object_copy

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_da-
ta_unavailable, memory_object_init, memory_object_ready, memory_ob-
ject_server, seqnos_memory_object_server.

110 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_create

Server Interface — Requests transfer of responsibility for a kernel-created
memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_create
(mach_port_t old_memory_object,
mach_port_t new_memory_object,
vm_size_t new_object_size,
mach_port_t new_control,
mach_port_t new_name,
vm_size_t new_page_size);

DESCRIPTION
A memory_object_create function is called as the result of a message from the
kernel requesting that the default memory manager accept responsibility for the
new memory object created by the kernel. The kernel makes this call only to the
system default memory manager.

The new memory object initially consists of zero-filled pages. Only memory
pages that are actually written are provided to the memory manager. When pro-
cessing memory_object_data_request calls from the kernel, the default memo-
ry manager must use memory_object_data_unavailable for any pages that
have not been written previously.

The kernel does not expect a reply to this call. The kernel assumes that the de-
fault memory manager will be ready to handle data requests to this object and
does not need the confirmation of a memory_object_ready call.

SEQUENCE NUMBER FORM
seqnos_memory_object_create

kern_return_t seqnos_memory_object_create
(mach_port_t old_memory_object,
mach_port_seqno_t seqno,
mach_port_t new_memory_object,
vm_size_t new_object_size,
mach_port_t new_control,
mach_port_t new_name,
vm_size_t new_page_size);

Mach 3 Kernel Interfaces 111

memory_object_create

PARAMETERS

old_memory_object
[in scalar] An existing abstract memory object provided by the default
memory manager.

seqno
[in scalar] The sequence number of this message relative to the old ab-
stract memory object port.

new_memory_object
[in scalar] The port representing the new abstract memory object creat-
ed by the kernel. The kernel provides all port rights (including the re-
ceive right) for the new memory object.

new_object_size
[in scalar] The maximum size for the new object, in bytes.

new_control
[in scalar] The memory cache port to be used by the memory manager
when making cache management requests for the new object.

new_name
[in scalar] The memory cache name port used by the kernel to refer to
the new memory object data in response to vm_region calls.

new_page_size
[in scalar] The page size used by the kernel. All calls involving this ker-
nel must use data sizes that are integral multiples of this page size.

NOTES
The kernel requires memory objects to provide temporary backing storage for
zero-filled memory created by vm_allocate calls, issued by both user tasks and
the kernel itself. The kernel allocates an abstract memory object port to repre-
sent the temporary backing storage and uses memory_object_create to pass the
new memory object to the default memory manager, which provides the storage.

The default memory manager is a trusted system component that is identified to
the kernel at system initialization time. The default memory manager can also
be changed at run time using the vm_set_default_memory_manager call.

The contents of a kernel-created (as opposed to a user-created) memory object
can be modified only in main memory. The default memory manager must not
change the contents of a temporary memory object, or allow unrelated tasks to
access the memory object, control, or name port.

The kernel can provide the maximum size of a temporary memory object be-
cause the object cannot be mapped by another user task.

112 Mach 3 Kernel Interfaces

External Memory Management Interface

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_data_initialize, memory_object_data_unavail-
able, memory_object_default_server, seqnos_memory_object_default_serv-
er.

Mach 3 Kernel Interfaces 113

memory_object_data_error

memory_object_data_error

Function — Indicates no data for a memory object

SYNOPSIS

kern_return_t memory_object_data_error
(mach_port_t memory_control,
vm_offset_t offset,
vm_size_t size,
kern_return_t reason);

DESCRIPTION
The memory_object_data_error function indicates that the memory manager
cannot provide the kernel with the data requested for the given region, specify-
ing a reason for the error.

When the kernel issues a memory_object_data_request call, the memory man-
ager can respond with a memory_object_data_error call to indicate that the
page cannot be retrieved, and that a memory failure exception should be raised
in any client threads that are waiting for the page. Clients are permitted to catch
these exceptions and retry their page faults. As a result, this call can be used to
report transient errors as well as permanent ones. A memory manager can use
this call for both hardware errors (for example, disk failures) and software er-
rors (for example, accessing data that does not exist or is protected).

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

size
[in scalar] The number of bytes of data (starting at offset). The number
must convert to an integral number of memory object pages.

reason
[in scalar] Reason for the error. The value could be a POSIX error code
for a hardware error.

NOTES
The reason code is currently ignored by the kernel.

114 Mach 3 Kernel Interfaces

External Memory Management Interface

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_data_request, memory_object_data_supply,
memory_object_data_unavailable.

Mach 3 Kernel Interfaces 115

memory_object_data_initialize

memory_object_data_initialize

Server Interface — Writes initial data back to a temporary memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_data_initialize
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count);

DESCRIPTION
A memory_object_data_initialize function is called as the result of a kernel
message providing the default memory manager with initial data for a kernel-
created memory object. If the memory manager already has supplied data (by a
previous memory_object_data_initialize or memory_object_data_return), it
should ignore this call. Otherwise, the call behaves the same as the memory_ob-
ject_data_return call.

The kernel makes this call only to the default memory manager and only on tem-
porary memory objects that it has created with memory_object_create. Note
that the kernel does not make this call on objects created via memory_object_-
copy.

SEQUENCE NUMBER FORM
seqnos_memory_object_data_initialize

kern_return_t seqnos_memory_object_data_initialize
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count);

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied by the kernel in a memory_object_create call.

116 Mach 3 Kernel Interfaces

External Memory Management Interface

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object.

data
[in pointer to dynamic array of bytes] The data that has been modified
while cached in physical memory.

data_count
[in scalar] The number of bytes to be written, starting at offset. The
number converts to an integral number of memory object pages.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_create, memory_object_data_return, memory_-
object_default_server, seqnos_memory_object_default_server.

Mach 3 Kernel Interfaces 117

memory_object_data_provided

memory_object_data_provided

Function — Supplies data for a region of a memory object (old form)

SYNOPSIS

kern_return_t memory_object_data_provided
(mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count,
vm_prot_t lock_value);

DESCRIPTION
The memory_object_data_provided function supplies the kernel with a range
of data for the specified memory object. A memory manager normally provides
data only in response to a memory_object_data_request call from the kernel.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

data
[in pointer to page aligned array of bytes] The address of the data be-
ing provided to the kernel.

data_count
[in scalar] The amount of data to be provided. The number must be an
integral number of memory object pages.

lock_value
[in scalar] One or more forms of access not permitted for the specified
data. Valid values are:

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

118 Mach 3 Kernel Interfaces

External Memory Management Interface

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

VM_PROT_ALL
Prohibits all forms of access.

NOTES
The kernel accepts only integral numbers of pages. It discards any partial pages
without notification.

memory_object_data_provided is the old form of memory_object_data_sup-
ply.

CAUTIONS
A memory manager must be careful when providing data that has not been ex-
plicitly requested. In particular, a memory manager must ensure that it does not
provide writable data again before it receives back modifications from the ker-
nel. This may require that the memory manager remember which pages it has
provided, or that it exercise other cache control functions (via memory_object_-
lock_request) before proceeding. Currently, the kernel prohibits the overwriting
of live data pages.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_data_error, memory_object_data_request, mem-
ory_object_data_supply, memory_object_data_unavailable, memory_ob-
ject_lock_request.

Mach 3 Kernel Interfaces 119

memory_object_data_request

memory_object_data_request

Server Interface — Requests data from a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_data_request
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_access);

DESCRIPTION
A memory_object_data_request function is called as the result of a kernel
message requesting data from the specified memory object, for at least the ac-
cess specified.

The kernel issues this call after a cache miss (that is, a page fault for which the
kernel does not have the data). The kernel requests only amounts of data that are
multiples of the page size included in the memory_object_init call.

The memory manager is expected to use memory_object_data_supply to re-
turn at least the specified data, with as much access as it can allow. If the memo-
ry manager cannot provide the data (for example, because of a hardware error),
it can use the memory_object_data_error call. The memory manager can also
use memory_object_data_unavailable to tell the kernel to supply zero-filled
memory for the region.

SEQUENCE NUMBER FORM
seqnos_memory_object_data_request

kern_return_t seqnos_memory_object_data_request
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_access);

120 Mach 3 Kernel Interfaces

External Memory Management Interface

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes requested, starting at offset. The num-
ber converts to an integral number of virtual pages.

desired_access
[in scalar] The memory access modes to be allowed for the cached
data. Possible values are obtained by or’ing together the following val-
ues:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_data_error, memory_object_data_supply, mem-
ory_object_data_unavailable, memory_object_server, seqnos_memory_ob-
ject_server.

Mach 3 Kernel Interfaces 121

memory_object_data_return

memory_object_data_return

Server Interface — Writes data back to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_data_return
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count,
boolean_t dirty,
boolean_t kernel_copy);

DESCRIPTION
A memory_object_data_return function is called as the result of a kernel mes-
sage providing the memory manager with data that has been evicted from the
physical memory cache.

The kernel writes back only data that has been modified or is precious. When
the memory manager no longer needs the data (for example, after the data has
been written to permanent storage), it should use vm_deallocate to release the
memory resources.

SEQUENCE NUMBER FORM
seqnos_memory_object_data_return

kern_return_t seqnos_memory_object_data_return
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count,
boolean_t dirty,
boolean_t kernel_copy);

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

122 Mach 3 Kernel Interfaces

External Memory Management Interface

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object.

data
[in pointer to dynamic array of bytes] The data that has been evicted
from the physical memory cache.

data_count
[in scalar] The number of bytes to be written, starting at offset. The
number converts to an integral number of memory object pages.

dirty
[in scalar] If TRUE, the pages returned have been modified.

kernel_copy
[in scalar] If TRUE, the kernel has kept a copy of the page.

NOTES
The kernel can flush clean (that is, un-modified) non-precious pages at its own
discretion. As a result, the memory manager cannot rely on the kernel to keep a
copy of its data or even to provide notification that its data has been discarded.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_data_supply, memory_object_data_write (old
form), vm_deallocate, memory_object_server, seqnos_memory_object_serv-
er.

Mach 3 Kernel Interfaces 123

memory_object_data_supply

memory_object_data_supply

Function — Supplies data for a region of a memory object

SYNOPSIS

kern_return_t memory_object_data_supply
(mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
mach_msg_type_number_t data_count,
boolean_t deallocate,
vm_prot_t lock_value,
boolean_t precious,
mach_port_t reply_port);

DESCRIPTION
The memory_object_data_supply function supplies the kernel with a range of
data for the specified memory object. A memory manager normally provides
data only in response to a memory_object_data_request call from the kernel.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

data
[in pointer to page aligned array of bytes] The address of the data be-
ing provided to the kernel.

data_count
[in scalar] The amount of data to be provided. The number must be an
integral number of memory object pages.

deallocate
[in scalar] If TRUE, the pages to be copied (starting at data) will be de-
allocated from the memory manager’s address space as a result of be-
ing copied into the message, allowing the pages to be moved into the
kernel instead of being physically copied.

124 Mach 3 Kernel Interfaces

External Memory Management Interface

lock_value
[in scalar] One or more forms of access not permitted for the specified
data. Valid values are:

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

VM_PROT_ALL
Prohibits all forms of access.

precious
[in scalar] If TRUE, the pages being supplied are “precious”, that is,
the memory manager is not (necessarily) retaining its own copy. These
pages must be returned to the manager when evicted from memory,
even if not modified.

reply_port
[in scalar] A port to which the kernel should send a memory_object_-
supply_completed to indicate the status of the accepted data. MACH_-
PORT_NULL is allowed. The reply message indicates which pages
have been accepted.

NOTES
The kernel accepts only integral numbers of pages. It discards any partial pages
without notification.

CAUTIONS
A memory manager must be careful when providing data that has not been ex-
plicitly requested. In particular, a memory manager must ensure that it does not
provide writable data again before it receives back modifications from the ker-
nel. This may require that the memory manager remember which pages it has
provided, or that it exercise other cache control functions (via memory_object_-
lock_request) before proceeding. Currently, the kernel prohibits the overwriting
of live data pages.

Mach 3 Kernel Interfaces 125

memory_object_data_supply

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_data_error, memory_object_data_provided (old
form), memory_object_data_request, memory_object_data_unavailable,
memory_object_lock_request, memory_object_supply_completed.

126 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_data_unavailable

Function — Indicates no data for a memory object

SYNOPSIS

kern_return_t memory_object_data_unavailable
(mach_port_t memory_control,
vm_offset_t offset,
vm_size_t size);

DESCRIPTION
The memory_object_data_unavailable function indicates that the memory
manager cannot provide the kernel with the data requested for the given region.
Instead, the kernel should provide the data for this region.

A memory manager can use this call in any of the following situations:

• When the object was created by the kernel (via memory_object_create) and
the kernel has not yet provided data for the region (via either memory_ob-
ject_data_initialize or memory_object_data_return). In this case, the ob-
ject is a temporary memory object; the memory manager is the default
memory manager; and the kernel should provide zero-filled pages for the ob-
ject.

• When the object was created by a memory_object_copy. In this case, the
kernel should copy the region from the original memory object.

• When the object is a normal user-created memory object. In this case, the
kernel should provide unlocked zero-filled pages for the region.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init or a memory_object_create call.

offset
[in scalar] The offset within the memory object, in bytes.

size
[in scalar] The number of bytes of data (starting at offset). The number
must convert to an integral number of memory object pages.

Mach 3 Kernel Interfaces 127

memory_object_data_unavailable

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_copy, memory_object_create, memory_object_-
data_error, memory_object_data_request, memory_object_data_supply.

128 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_data_unlock

Server Interface — Requests access to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_data_unlock
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_access);

DESCRIPTION
A memory_object_data_unlock function is called as the result of a kernel mes-
sage requesting the memory manager to permit at least the desired access to the
specified data cached by the kernel. The memory manager is expected to use the
memory_object_lock_request call in response.

SEQUENCE NUMBER FORM
seqnos_memory_object_data_unlock

kern_return_t seqnos_memory_object_data_unlock
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_access);

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more

Mach 3 Kernel Interfaces 129

memory_object_data_unlock

than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes to which the access applies, starting at
offset. The number converts to an integral number of memory object
pages.

desired_access
[in scalar] The memory access modes requested for the cached data.
Possible values are obtained by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_lock_completed, memory_object_lock_request,
memory_object_server, seqnos_memory_object_server.

130 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_data_write

Server Interface — Writes changed data back to a memory object (old form)

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_data_write
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count);

DESCRIPTION
A memory_object_data_write function is called as the result of a kernel mes-
sage providing the memory manager with data that has been modified while
cached in physical memory. This old form is used if the memory manager
makes the object ready via the old memory_object_set_attributes instead of
memory_object_ready.

The kernel writes back only data that has been modified. When the memory
manager no longer needs the data (for example, after the data has been written
to permanent storage), it should use vm_deallocate to release the memory re-
sources.

SEQUENCE NUMBER FORM
seqnos_memory_object_data_write

kern_return_t seqnos_memory_object_data_write
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count);

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

Mach 3 Kernel Interfaces 131

memory_object_data_write

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object.

data
[in pointer to dynamic array of bytes] The data that has been modified
while cached in physical memory.

data_count
[in scalar] The number of bytes to be written, starting at offset. The
number converts to an integral number of memory object pages.

NOTES
The kernel can flush clean (that is, un-modified) pages at its own discretion. As
a result, the memory manager cannot rely on the kernel to keep a copy of its
data or even to provide notification that its data has been discarded.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_data_return, memory_object_set_attributes,
vm_deallocate, memory_object_server, seqnos_memory_object_server.

132 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_destroy

Function — Shuts down a memory object

SYNOPSIS

kern_return_t memory_object_destroy
(mach_port_t memory_control,
kern_return_t reason);

DESCRIPTION
The memory_object_destroy function tells the kernel to shut down the speci-
fied memory object. As a result of this call, the kernel no longer supports paging
activity or any memory object calls on the memory object. The kernel issues a
memory_object_terminate call to pass to the memory manager all rights to the
memory object port, the memory control port, and the memory name port.

To ensure that any modified cached data is returned before the object is terminat-
ed, the memory manager should call memory_object_lock_request with shoul-
d_flush set and a lock value of VM_PROT_WRITE before it makes the
memory_object_destroy call.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

reason
[in scalar] An error code indicating when the object must be destroyed.

NOTES
The reason code is currently ignored by the kernel.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_lock_request, memory_object_terminate.

Mach 3 Kernel Interfaces 133

memory_object_get_attributes

memory_object_get_attributes

Function — Returns current attributes for a memory object

SYNOPSIS

kern_return_t memory_object_get_attributes
(mach_port_t memory_control,
boolean_t* object_ready,
boolean_t* may_cache_object,
memory_object_copy_strategy_t* copy_strategy);

DESCRIPTION
The memory_object_get_attributes function retrieves the current attributes for
the specified memory object.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

object_ready
[out scalar] Ready indicator. If true, the kernel can issue new data and
unlock requests on the memory object.

may_cache_object
[out scalar] Cache indicator. If true, the kernel can cache data associat-
ed with the memory object, even if virtual memory references to it are
removed.

copy_strategy
[out scalar] How the kernel should handle copying of regions associat-
ed with the memory object. Possible values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object’s
data. Normally, the kernel requests each page with read ac-
cess, copies the data, and then (optionally) flushes the data.

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (via memory_object_copy) be-
fore copying any data.

134 Mach 3 Kernel Interfaces

External Memory Management Interface

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_copy, memo-
ry_object_ready.

Mach 3 Kernel Interfaces 135

memory_object_init

memory_object_init

Server Interface — Initializes a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_init
(mach_port_t memory_object,
mach_port_t memory_control,
mach_port_t memory_object_name,
vm_size_t memory_object_page_size);

DESCRIPTION
A memory_object_init function is called as the result of a kernel message noti-
fying a memory manager that the kernel has been asked to map the specified
memory object into a task’s virtual address space.

When asked to map a memory object for the first time, the kernel responds by
making a memory_object_init call on the abstract memory object. This call is
provided as a convenience to the memory manager, to allow it to initialize data
structures and prepare to receive other requests.

In addition to the abstract memory object port itself, the call provides the follow-
ing two ports:

• A memory cache control port that the memory manager can use to control
use of its data by the kernel. The memory manager gets send rights for this
port.

• A memory cache name port that the kernel will use to identify the memory
object to other tasks.

The kernel holds send rights for the abstract memory object port, and both send
and receive rights for the memory cache control and name ports.

The call also supplies the virtual page size to be used for the memory mapping.
The memory manager can use this size to detect mappings that use different
data structures at initialization time, or to allocate buffers for use in reading data.

If a memory object is mapped into the address space of more than one task on
different hosts (with independent kernels), the memory manager will receive a
memory_object_init call from each kernel, containing a unique set of control
and name ports. Note that each kernel may also use a different page size.

136 Mach 3 Kernel Interfaces

External Memory Management Interface

SEQUENCE NUMBER FORM
seqnos_memory_object_init

kern_return_t seqnos_memory_object_init
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
mach_port_t memory_object_name,
vm_size_t memory_object_page_size);

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

memory_control
[in scalar] The memory cache control port to be used by the memory
manager. If the memory object has been supplied to more than one ker-
nel, this parameter identifies the kernel that is making the call.

memory_object_name
[in scalar] The memory cache name port used by the kernel to refer to
the memory object data in response to vm_region calls.

memory_object_page_size
[in scalar] The page size used by the kernel. All calls involving this ker-
nel must use data sizes that are integral multiples of this page size.

NOTES
When the memory manager is ready to accept data requests for this memory ob-
ject, it must call memory_object_ready. Otherwise, the kernel will not process
requests on this object.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_ready, memory_object_terminate, memory_ob-
ject_server, seqnos_memory_object_server.

Mach 3 Kernel Interfaces 137

memory_object_lock_completed

memory_object_lock_completed

Server Interface — Indicates completion of a consistency control call

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_lock_completed
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length);

DESCRIPTION
A memory_object_lock_completed function is called as the result of a kernel
message confirming the kernel’s action in response to a memory_object_lock_-
request call from the memory manager. The memory manager can use the
memory_object_lock_request call to:

• Alter access restrictions specified in the memory_object_data_supply call
or a previous memory_object_lock_request call.

• Write back modifications made in memory.

• Invalidate its cached data.

When the kernel completes the requested actions, it calls memory_object_-
lock_completed (asynchronously) using the port explicitly provided in the
memory_object_lock_request call. Because the memory manager cannot
know which pages have been modified, or even which pages remain in the
cache, it cannot know how many pages will be written back in response to a
memory_object_lock_request call. Receiving the memory_object_lock_com-
pleted call is the only sure means of detecting completion. The completion call
includes the offset and length values from the consistency request to distinguish
it from other consistency requests.

SEQUENCE NUMBER FORM
seqnos_memory_object_lock_completed

kern_return_t seqnos_memory_object_lock_completed
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length);

138 Mach 3 Kernel Interfaces

External Memory Management Interface

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

seqno
[in scalar] The sequence number of this message relative to the port
named in the memory_object_lock_request message.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes to which the call refers, starting at off-
set. The number converts to an integral number of memory object pag-
es.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_lock_request, memory_object_server, seqnos_-
memory_object_server.

Mach 3 Kernel Interfaces 139

memory_object_lock_request

memory_object_lock_request

Function — Restricts access to memory object data

SYNOPSIS

kern_return_t memory_object_lock_request
(mach_port_t memory_control,
vm_offset_t offset,
vm_size_t size,
memory_object_return_t should_return,
boolean_t should_flush,
vm_prot_t lock_value,
mach_port_t reply_to);

DESCRIPTION
The memory_object_lock_request function allows the memory manager to
make the following requests of the kernel:

• Clean the pages within the specified range by writing back all changed (that
is, dirty) and precious pages. The kernel uses the memory_object_data_re-
turn call to write back the data. The should_return parameter must be set to
non-zero.

• Flush all cached data within the specified range. The kernel invalidates the
range of data and revokes all uses of that data. The should_flush parameter
must be set to true.

• Alter access restrictions specified in the memory_object_data_supply call
or a previous memory_object_lock_request call. The lock_value parameter
must specify the new access restrictions. Note that this parameter can be
used to unlock previously locked data.

Once the kernel performs all of the actions requested by this call, it issues a
memory_object_lock_completed call using the reply_to port.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

140 Mach 3 Kernel Interfaces

External Memory Management Interface

size
[in scalar] The number of bytes of data (starting at offset) to be affect-
ed. The number must convert to an integral number of memory object
pages.

should_return
[in scalar] Clean indicator. Values are:

MEMORY_OBJECT_RETURN_NONE
Don’t return any pages. If should_flush is TRUE, pages will
be discarded.

MEMORY_OBJECT_RETURN_DIRTY
Return only dirty (modified) pages. If should_flush is TRUE,
precious pages will be discarded; otherwise, the kernel main-
tains responsibility for precious pages.

MEMORY_OBJECT_RETURN_ALL
Both dirty and precious pages are returned. If should_flush is
FALSE, the kernel maintains responsibility for the precious
pages.

should_flush
[in scalar] Flush indicator. If true, the kernel flushes all pages within
the range.

lock_value
[in scalar] One or more forms of access not permitted for the specified
data. Valid values are:

VM_PROT_NO_CHANGE
Do not change the protection of any pages.

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

VM_PROT_ALL
Prohibits all forms of access.

Mach 3 Kernel Interfaces 141

memory_object_lock_request

reply_to
[in scalar] The response port to be used by the kernel on a call to mem-
ory_object_lock_completed, or MACH_PORT_NULL if no response
is required.

NOTES
The memory_object_lock_request call affects only data that is cached at the
time of the call. Access restrictions cannot be applied to pages for which data
has not been provided.

When a running thread requires an access that is currently prohibited, the kernel
issues a memory_object_data_unlock call specifying the access required. The
memory manager can then use memory_object_lock_request to relax its ac-
cess restrictions on the data.

To indicate that an unlock request is invalid (that is, requires permission that can
never be granted), the memory manager must first flush the page. When the ker-
nel requests the data again with the higher permission, the memory manager can
indicate the error by responding with a call to memory_object_data_error.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_data_supply, memory_object_data_unlock,
memory_object_lock_completed.

142 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_ready

Function — Marks a memory object is ready to receive paging operations

SYNOPSIS

kern_return_t memory_object_ready
(mach_port_t memory_control,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy);

DESCRIPTION
The memory_object_ready function informs the kernel that the manager is
ready to receive data or unlock requests on behalf of clients. Performance-relat-
ed attributes for the specified memory object can also be set at this time. These
attributes control whether the kernel is permitted to:

• Retain data from a memory object even after all address space mappings
have been de-allocated (may_cache_object parameter).

• Perform optimizations for virtual memory copy operations (copy_strategy
parameter).

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object’s
data. Normally, the kernel requests each page with read ac-
cess, copies the data, and then (optionally) flushes the data.

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (via memory_object_copy) be-
fore copying any data.

Mach 3 Kernel Interfaces 143

memory_object_ready

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

NOTES
Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly by different programs. By retaining the data
for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_copy, memo-
ry_object_get_attributes, memory_object_init, memory_object_set_at-
tributes (old form).

144 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_set_attributes

Function — Sets attributes for a memory object (old form)

SYNOPSIS

kern_return_t memory_object_set_attributes
(mach_port_t memory_control,
boolean_t object_ready,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy);

DESCRIPTION
The memory_object_set_attributes function allows the memory manager to
set performance-related attributes for the specified memory object. These at-
tributes control whether the kernel is permitted to:

• Make data or unlock requests on behalf of clients (object_ready parameter).

• Retain data from a memory object even after all address space mappings
have been de-allocated (may_cache_object parameter).

• Perform optimizations for virtual memory copy operations (copy_strategy
parameter).

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in a memory_object_init call.

object_ready
[in scalar] Ready indicator. If true, the kernel can issue new data and
unlock requests on the memory object.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object’s
data. Normally, the kernel requests each page with read ac-
cess, copies the data, and then (optionally) flushes the data.

Mach 3 Kernel Interfaces 145

memory_object_set_attributes

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (via memory_object_copy) be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

NOTES
memory_object_set_attributes is the old form of memory_object_change_at-
tributes. When used to change the cache or copy strategy attributes, it has the
same effect (with the omission of a possible reply) as memory_ob-
ject_change_attributes. The difference between these two calls is the ready at-
tribute. The use of this old call with the ready attribute set has the same basic
effect as the new memory_object_ready call. However, the use of this old call
informs the kernel that this is an old form memory manager that expects memo-
ry_object_data_write messages instead of the new memory_object_data_re-
turn messages implied by memory_object_ready. Changing a memory object
to be not ready does not affect data and unlock requests already in progress.
Such requests will not be aborted or reissued.

Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly by different programs. By retaining the data
for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_copy, memo-
ry_object_get_attributes, memory_object_init, memory_object_ready.

146 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_supply_completed

Server Interface — Indicates completion of a data supply call

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_supply_completed
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
kern_return_t result,
vm_offset_t error_offset);

DESCRIPTION
A memory_object_supply_completed function is called as the result of a ker-
nel message confirming the kernel’s action in response to a memory_object_-
data_supply call from the memory manager.

When the kernel accepts the pages, it calls memory_object_supply_completed
(asynchronously) using the port explicitly provided in the memory_object_-
data_supply call. Because the data supply call can provide multiple pages, not
all of which the kernel may necessarily accept and some of which the kernel
may have to return to the manager (if precious), the kernel provides this re-
sponse. If the kernel does not accept all of the pages in the data supply message,
it will indicate so in the completion response. If the pages not accepted are pre-
cious, they will be returned (in memory_object_data_return messages) before
it sends this completion message. The completion call includes the offset and
length values from the supply request to distinguish it from other supply re-
quests.

SEQUENCE NUMBER FORM
seqnos_memory_object_supply_completed

kern_return_t seqnos_memory_object_supply_completed
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
kern_return_t result,
vm_offset_t error_offset);

Mach 3 Kernel Interfaces 147

memory_object_supply_completed

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

seqno
[in scalar] The sequence number of this message relative to the port
named in the memory_object_data_supply call.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object from the corresponding
data supply call

length
[in scalar] The number of bytes accepted. The number converts to an
integral number of memory object pages.

result
[in scalar] A kernel return code indicating the result of the supply oper-
ation, possibly KERN_SUCCESS. KERN_MEMORY_PRESENT is
currently the only error returned; other errors (invalid arguments, for
example) abort the data supply operation.

error_offset
[in scalar] The offset within the memory object where the first error oc-
curred.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_data_supply, memory_object_server, seqnos_-
memory_object_server.

148 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_terminate

Server Interface — Relinquishes access to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t memory_object_terminate
(mach_port_t memory_object,
mach_port_t memory_control,
mach_port_t memory_object_name);

DESCRIPTION
A memory_object_terminate function is called as the result of a kernel mes-
sage notifying a memory manager that no mappings of the specified memory ob-
ject remain. The kernel makes this call to allow the memory manager to clean
up data structures associated with the de-allocated mappings. The call provides
receive rights to the memory cache control and name ports so that the memory
manager can destroy the ports (via mach_port_deallocate). The kernel also re-
linquishes its send rights for all three ports.

The kernel terminates a memory object only after all address space mappings of
the object have been de-allocated, or upon explicit request by the memory man-
ager.

SEQUENCE NUMBER FORM
seqnos_memory_object_terminate

kern_return_t seqnos_memory_object_terminate
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
mach_port_t memory_object_name);

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel in a vm_map call.

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

Mach 3 Kernel Interfaces 149

memory_object_terminate

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

memory_object_name
[in scalar] The memory cache name port used by the kernel to refer to
the memory object data in response to vm_region calls.

NOTES
If a client thread calls vm_map to map a memory object while the kernel is call-
ing memory_object_terminate for the same memory object, the memory_ob-
ject_init call may appear before the memory_object_terminate call. This
sequence is indistinguishable from the case where another kernel is issuing a
memory_object_init call. In other words, the control and name ports included
in the initialization will be different from those included in the termination. A
memory manager must be aware that this sequence can occur even when all
mappings of a memory object take place on the same host.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION
Functions: memory_object_destroy, memory_object_init, mach_port_deallo-
cate, memory_object_server, seqnos_memory_object_server.

150 Mach 3 Kernel Interfaces

External Memory Management Interface

vm_set_default_memory_manager

Function — Sets the default memory manager.

SYNOPSIS

kern_return_t vm_set_default_memory_manager
(mach_port_t host,
mach_port_t* default_manager);

DESCRIPTION
The vm_set_default_memory_manager function establishes the default memo-
ry manager for a host.

PARAMETERS

host
[in scalar] The control port naming the host for which the default mem-
ory manager is to be set.

default_manager
[pointer to in/out scalar] A memory manager port to the new default
memory manager. If this value is MACH_PORT_NULL, the old mem-
ory manager is not changed. The old memory manager port is returned
in this variable.

RETURN VALUE

KERN_SUCCESS
The old default memory port was returned and the new manager estab-
lished.

KERN_INVALID_ARGUMENT
The supplied host port is not the host control port.

RELATED INFORMATION
Functions: memory_object_create, vm_allocate.

Mach 3 Kernel Interfaces 151

CHAPTER 6 Thread Interface

This chapter discusses the specifics of the kernel’s thread interfaces. This includes status
functions related to threads. Properties associated with threads, such as special ports, are
included here as well. Functions that apply to more than one thread appear in the task in-
terface chapter.

152 Mach 3 Kernel Interfaces

Thread Interface

catch_exception_raise

Server Interface — Handles the occurrence of an exception within a thread

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t catch_exception_raise
(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
int exception,
int code,
int subcode);

DESCRIPTION
A catch_exception_raise function is called by exc_server as the result of a ker-
nel message indicating that an exception occurred within a thread. exception_-
port is the port named via thread_set_special_port or task_set_special_port
as the port that responds when the thread takes an exception.

PARAMETERS

exception_port
[in scalar] The port to which the exception notification was sent.

thread
[in scalar] The control port to the thread taking the exception.

task
[in scalar] The control port to the task containing the thread taking the
exception.

exception
[in scalar] The type of the exception, as defined in <mach/excep-
tion.h>. The machine independent values raised by all implementa-
tions are:

EXC_BAD_ACCESS
Could not access memory. code contains kern_return_t de-
scribing error. subcode contains bad memory address.

EXC_BAD_INSTRUCTION
Instruction failed. Illegal or undefined instruction or operand

Mach 3 Kernel Interfaces 153

catch_exception_raise

EXC_ARITHMETIC
Arithmetic exception; exact nature of exception is in code field

EXC_EMULATION
Emulation instruction. Emulation support instruction encoun-
tered. Details in code and subcode fields.

EXC_SOFTWARE
Software generated exception; exact exception is in code
field. Codes 0 - 0xFFFF reserved to hardware; codes 0x10000
- 0x1FFFF reserved for OS emulation (Unix).

EXC_BREAKPOINT
Trace, breakpoint, etc. Details in code field.

code
[in scalar] A code indicating a particular instance of exception.

subcode
[in scalar] A specific type of code.

NOTES
When an exception occurs in a thread, the thread sends an exception message to
its exception port, blocking in the kernel waiting for the receipt of a reply. It is
assumed that some task is listening (most likely with mach_msg_server) to this
port, using the exc_server function to decode the messages and then call the
linked in catch_exception_raise. It is the job of catch_exception_raise to han-
dle the exception and decide the course of action for thread. The state of the
blocked thread can be examined with thread_get_state.

If the thread should continue from the point of exception, catch_exception_-
raise would return KERN_SUCCESS. This causes a reply message to be sent to
the kernel, which will allow the thread to continue from the point of the excep-
tion.

If some other action should be taken by thread, the following actions should be
performed by catch_exception_raise:

• thread_suspend. This keeps the thread from proceeding after the next step.

• thread_abort. This aborts the message receive operation currently blocking
the thread.

• thread_set_state. Set the thread’s state so that it continues doing something
else.

• thread_resume. Let the thread start running from its new state.

• Return a value other than KERN_SUCCESS so that no reply message is
sent. (Actually, the kernel uses a send once right to send the exception mes-
sage, which thread_abort destroys, so replying to the message is harmless.)

154 Mach 3 Kernel Interfaces

Thread Interface

The thread can always be destroyed with thread_terminate.

A thread can have two exception ports active for it: its thread exception port and
the task exception port. If an exception message is sent to the thread exception
port (if it exists), and a reply message contains a return value other than
KERN_SUCCESS, the kernel will then send the exception message to the task
exception port. If that exception message receives a reply message with other
than a return value of KERN_SUCCESS, the thread is terminated. Note that this
behavior cannot be obtained by using the catch_exception_raise interface
called by exc_server and mach_msg_server, since those functions will either
return a reply message with a KERN_SUCCESS value, or none at all.

RETURN VALUE

KERN_SUCCESS
The thread is to continue from the point of exception.

Other values indicate that the exception was handled directly and the thread was
restarted or terminated by the exception handler.

RELATED INFORMATION
Functions: exception_raise, exc_server, thread_abort, task_get_special_-
port , thread_get_special_port, thread_get_state, thread_resume, task_-
set_special_port, thread_set_special_port, thread_set_state,
thread_suspend, thread_terminate.

Mach 3 Kernel Interfaces 155

evc_wait

evc_wait

System Trap — Wait for a kernel (device) signalled event

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t evc_wait
(unsigned int event);

DESCRIPTION
The evc_wait function causes the invoking thread to wait until the specified ker-
nel (device) generated event occurs. Device drivers (typically mapped devices
intended to be supported by user space drivers) may supply an event count ser-
vice.

The event count service defines one or more event objects, named by task local
event IDs. Each of these event objects has an associated event count, initially
zero. Whenever the associated event occurs (typically a device interrupt), the
event count is incremented. If this count is zero when evc_wait is called, the
calling thread waits for the next event to occur. Only one thread may be waiting
for the event to occur. If the count is non-zero when evc_wait is called, the
count is simply decremented without causing the thread to wait. The event
count guarantees that no events are lost.

PARAMETERS

event
[in scalar] The task local event ID of the kernel event object.

NOTES
The typical use of this service is within user space device drivers. When a de-
vice interrupt occurs, the (in this case, simple) kernel device driver would place
device status in a shared (with the user device driver) memory window (estab-
lished by device_map) and signal the associated event. The user space device
driver would normally be waiting with evc_wait. The user thread then wakes,
processes the device status, typically interacting with the device via its shared
memory window, then waits for the next interrupt.

156 Mach 3 Kernel Interfaces

Thread Interface

RETURN VALUE

KERN_SUCCESS
The event has occurred.

KERN_INVALID_ARGUMENT
The event object is damaged.

KERN_NO_SPACE
There is already a thread waiting for this event.

RELATED INFORMATION
Functions: device_map.

Mach 3 Kernel Interfaces 157

exception_raise

exception_raise

Function — Sends an exception message

LIBRARY
#include <mach/exc.h>

SYNOPSIS

kern_return_t exception_raise
(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
int exception,
int code,
int subcode);

DESCRIPTION
The exception_raise function can be used to send an exception message to an
exception server. This function is normally called only by a thread in the con-
text of the kernel when it takes an exception. It may be called by intermediaries
to signal an exception to an exception server. Note that calling this function
does not cause the specified thread to take an exception; it is called to signify
that the thread did take the specified exception.

PARAMETERS

exception_port
[in scalar] The port to which the exception notification is to be sent.
This is normally the port named via thread_set_special_port or
task_set_special_port.

thread
[in scalar] The control port to the thread taking the exception.

task
[in scalar] The control port to the task containing the thread taking the
exception.

exception
[in scalar] The type of the exception, as defined in <mach/excep-
tion.h>. The machine independent values raised by all implementa-
tions are:

158 Mach 3 Kernel Interfaces

Thread Interface

EXC_BAD_ACCESS
Could not access memory. code contains kern_return_t de-
scribing error. subcode contains bad memory address.

EXC_BAD_INSTRUCTION
Instruction failed. Illegal or undefined instruction or operand

EXC_ARITHMETIC
Arithmetic exception; exact nature of exception is in code field

EXC_EMULATION
Emulation instruction. Emulation support instruction encoun-
tered. Details in code and subcode fields.

EXC_SOFTWARE
Software generated exception; exact exception is in code
field. Codes 0 - 0xFFFF reserved to hardware; codes 0x10000
- 0x1FFFF reserved for OS emulation (Unix).

EXC_BREAKPOINT
Trace, breakpoint, etc. Details in code field.

code
[in scalar] A code indicating a particular instance of exception.

subcode
[in scalar] A specific type of code.

RETURN VALUE

KERN_SUCCESS
The exception server has indicated that the thread is to continue from
the point of exception.

Other values indicate that the exception was handled directly and the thread was
restarted or terminated by the exception handler.

RELATED INFORMATION
Functions: catch_exception_raise, exc_server.

Mach 3 Kernel Interfaces 159

mach_sample_thread

mach_sample_thread

Function — Perform periodic PC sampling for a thread

SYNOPSIS

kern_return_t mach_sample_thread
(mach_port_t task,
mach_port_t reply_port,
mach_port_t sample_thread);

DESCRIPTION
The mach_sample_thread function causes the program counter (PC) of the
specified sample_thread to be sampled periodically (whenever the thread hap-
pens to be running at the time of the kernel’s “hardclock” interrupt). The set of
PC sample values obtained are saved in buffers which are sent to the specified
reply_port.

PARAMETERS

task
[in scalar] Random task port on the same node as sample_thread. (not
used)

reply_port
[in scalar] Port to which PC sample buffers are sent. A value of
MACH_PORT_NULL stops PC sampling for the thread.

sample_thread
[in scalar] Thread whose PC is to be sampled

NOTES
Once PC sampling (profiling) is enabled for a thread, the kernel will, at random
times, send a buffer full of PC samples to the specified reply_port. These buff-
ers have the following format:

[1] struct message
[2] {
[3] mach_msg_header_t head;
[4] mach_msg_type_t type;
[5] int arg [SIZE_PROF_BUFFER+1];
[6] };

The message ID is 666666. (SIZE_PROF_BUFFER is defined in mach/profil-
param.h). arg [SIZE_PROF_BUFFER] specifies the number of values actually

160 Mach 3 Kernel Interfaces

Thread Interface

sent. If this value is less than SIZE_PROF_BUFFER, it means that this is the
last buffer to be sent (PC sampling had been turned off for the thread).

RETURN VALUE

KERN_SUCCESS
PC sampling has been enabled/disabled.

KERN_INVALID_ARGUMENT
task, reply_port, or sample_thread are not valid

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

RELATED INFORMATION
Functions: mach_sample_task.

Mach 3 Kernel Interfaces 161

mach_thread_self

mach_thread_self

System Trap — Returns the thread self port

LIBRARY
#include <mach/mach_traps.h>

SYNOPSIS

mach_port_t mach_thread_self
();

DESCRIPTION
The mach_thread_self function returns send rights to the thread’s own kernel
port.

PARAMETERS
None

RETURN VALUE
Send rights to the thread’s port.

RELATED INFORMATION
Functions: thread_info.

162 Mach 3 Kernel Interfaces

Thread Interface

swtch

System Trap — Attempt a context switch

LIBRARY
Not declared anywhere.

SYNOPSIS

boolean_t swtch
();

DESCRIPTION
The swtch function attempts to context switch the current thread off the proces-
sor.

This function is useful in user level lock management routines. If the current
thread cannot make progress because of some lock, it would execute the swtch
function. When this returns, the thread should once again try to make progress
by attempting to obtain its lock.

This function returns a flag indicating whether there is anything else for the pro-
cessor to do. If there is nothing else, the thread can spin waiting for its lock, in-
stead of continuing to call swtch.

PARAMETERS
None

RETURN VALUE

TRUE
There are other threads that the processor could run.

FALSE
The processor has nothing better to do.

RELATED INFORMATION
Functions: swtch_pri, thread_abort, thread_switch.

Mach 3 Kernel Interfaces 163

swtch_pri

swtch_pri

System Trap — Attempt a context switch to low priority

LIBRARY
Not declared anywhere.

SYNOPSIS

boolean_t swtch_pri
(int priority);

DESCRIPTION
The swtch_pri function attempts to context switch the current thread off the pro-
cessor. The thread’s priority is lowered to the minimum possible value during
this time. The priority of the thread will be restored when it is awakened.

This function is useful in user level lock management routines. If the current
thread cannot make progress because of some lock, it would execute the swtch_-
pri function. When this returns, the thread should once again try to make
progress by attempting to obtain its lock.

This function returns a flag indicating whether there is anything else for the pro-
cessor to do. If there is nothing else, the thread can spin waiting for its lock, in-
stead of continuing to call swtch_pri.

PARAMETERS

priority
[in scalar] Currently not used.

RETURN VALUE

TRUE
There are other threads that the processor could run.

FALSE
The processor has nothing better to do.

RELATED INFORMATION
Functions: swtch, thread_abort, thread_depress_abort, thread_switch.

164 Mach 3 Kernel Interfaces

Thread Interface

thread_abort

Function — Aborts a thread

SYNOPSIS

kern_return_t thread_abort
(mach_port_t target_thread);

DESCRIPTION
The thread_abort function aborts page faults and any message primitive calls
(mach_msg, mach_msg_receive, and mach_msg_send) in use by tar-
get_thread. (Note, though, that the message calls retry interrupted message oper-
ations unless MACH_SEND_INTERRUPT and MACH_RCV_INTERRUPT
are specified.) Priority depressions are also aborted. The call returns a code indi-
cating that it was interrupted. The call is interrupted even if the thread (or the
task containing it) is suspended. If it is suspended, the thread receives the inter-
rupt when it resumes.

If its state is not modified before it resumes, the thread will retry an aborted
page fault. The Mach message trap returns either MACH_SEND_INTERRUPT-
ED or MACH_RCV_INTERRUPTED, depending on whether the send or the re-
ceive side was interrupted. Note, though, that the Mach message trap is
contained within the mach_msg library routine, which, by default, retries inter-
rupted message calls.

The basic purpose of thread_abort is to let one thread cleanly stop another
thread (target_thread). The target thread is stopped in such a manner that its fu-
ture execution can be controlled in a predictable way.

PARAMETERS

target_thread
[in scalar] The thread to be aborted.

NOTES
By way of comparison, the thread_suspend function keeps the target thread
from executing any further instructions at the user level, including the return
from a system call. The thread_get_state function returns the thread’s user
state, while thread_set_state allows modification of the user state.

A problem occurs if a suspended thread had been executing within a system
call. In this case, the thread has, not only a user state, but an associated kernel
state. (The kernel state cannot be changed with thread_set_state.) As a result,
when the thread resumes, the system call can return, producing a change in the
user state and, possibly, user memory.

Mach 3 Kernel Interfaces 165

thread_abort

For a thread executing within a system call, thread_abort aborts the kernel call
from the thread’s point of view. Specifically, it resets the kernel state so that the
thread will resume execution at the system call return, with the return code val-
ue set to one of the interrupted codes. The system call itself is either completed
entirely or aborted entirely, depending on when the abort is received. As a re-
sult, if the thread’s user state has been modified by thread_set_state, it will not
be altered un-predictably by any unexpected system call side effects.

For example, to simulate a POSIX signal, use the following sequence of calls:

thread_suspend — To stop the thread.

thread_abort — To interrupt any system call in progress and set the
return value to “interrupted”. Because the thread is already stopped, it
will not return to user code.

thread_set_state — To modify the thread’s user state to simulate a pro-
cedure call to the signal handler.

thread_resume — To resume execution at the signal handler. If the
thread’s stack is set up correctly, the thread can return to the interrupt-
ed system call. Note that the code to push an extra stack frame and
change the registers is highly machine dependent.

CAUTIONS
As a rule, do not use thread_abort on a non-suspended thread. This operation
is very risky because it is difficult to know which system trap, if any, is execut-
ing and whether an interrupt return will result in some useful action by the
thread.

RETURN VALUE

KERN_SUCCESS
The thread received an interrupt.

KERN_INVALID_ARGUMENT
target_thread is not a valid thread.

RELATED INFORMATION
Functions: thread_get_state, thread_info, thread_set_state, thread_suspend,
thread_terminate.

166 Mach 3 Kernel Interfaces

Thread Interface

thread_create

Function — Creates a thread within a task

SYNOPSIS

kern_return_t thread_create
(mach_port_t parent_task,
mach_port_t* child_thread);

DESCRIPTION
The thread_create function creates a new thread within parent_task. The new
thread has a suspend count of one and no processor state.

The new thread holds a send right for its thread kernel port. A send right for the
thread’s kernel port is also returned to the calling task or thread in child_thread.
The new thread’s exception port is set to MACH_PORT_NULL.

PARAMETERS

parent_task
[in scalar] The task that is to contain the new thread.

child_thread
[out scalar] The kernel-assigned name for the new thread.

NOTES
To get a new thread running, first use thread_set_state to set a processor state
for the thread. Then, use thread_resume to schedule the thread for execution.

RETURN VALUE

KERN_SUCCESS
A new thread has been created.

KERN_INVALID_ARGUMENT
parent_task is not a valid task port.

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

Mach 3 Kernel Interfaces 167

thread_create

RELATED INFORMATION
Functions: task_create, task_threads, thread_get_special_port, thread_get_-
state, thread_resume, thread_set_special_port, thread_set_state, thread_-
suspend, thread_terminate.

168 Mach 3 Kernel Interfaces

Thread Interface

thread_depress_abort

Function — Cancel thread priority depression

SYNOPSIS

kern_return_t thread_depress_abort
(mach_port_t thread);

DESCRIPTION
The thread_depress_abort function cancels any priority depression effective
for thread caused by a swtch_pri or thread_switch call.

PARAMETERS

thread
[in scalar] Thread whose priority depression is canceled.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_ARGUMENT
thread is not a valid thread.

RELATED INFORMATION
Functions: swtch, swtch_pri, thread_abort, thread_switch.

Mach 3 Kernel Interfaces 169

thread_get_special_port

thread_get_special_port

Function — Returns a send right to a special port

SYNOPSIS

kern_return_t thread_get_special_port
(mach_port_t thread,
int which_port,
mach_port_t* special_port);

DESCRIPTION
The thread_get_special_port function returns a send right for a special port be-
longing to thread.

The thread kernel port is a port for which the kernel holds the receive right. The
kernel uses this port to identify the thread.

If one thread has a send right for the kernel port of another thread, it can use the
port to perform kernel operations for the other thread. Send rights for a kernel
port normally are held only by the thread to which the port belongs, or by the
task that contains the thread. Using the mach_msg function, however, any
thread can pass a send right for its kernel port to another thread.

MACRO FORMS
thread_get_exception_port

kern_return_t thread_get_exception_port
(mach_port_t thread,
mach_port_t* special_port)

 ⇒ thread_get_special_port (thread,
THREAD_EXCEPTION_PORT, special_port)

thread_get_kernel_port
kern_return_t thread_get_kernel_port

(mach_port_t thread,
mach_port_t* special_port)

⇒ thread_get_special_port (thread, THREAD_KERNEL_PORT,
special_port)

PARAMETERS

thread
[in scalar] The thread for which to return the port’s send right.

170 Mach 3 Kernel Interfaces

Thread Interface

which_port
[in scalar] The special port for which the send right is requested. Valid
values are:

THREAD_EXCEPTION_PORT
The thread’s exception port. Used to receive exception mes-
sages from the kernel.

THREAD_KERNEL_PORT
The port used to name the thread. Used to invoke operations
that affect the thread.

special_port
[out scalar] The returned value for the port.

RETURN VALUE

KERN_SUCCESS
The port was returned.

KERN_INVALID_ARGUMENT
thread is not a valid thread or which_port is not a valid port selector.

RELATED INFORMATION
Functions: mach_thread_self, task_get_special_port, task_set_special_port,
thread_create, thread_set_special_port.

Mach 3 Kernel Interfaces 171

thread_get_state

thread_get_state

Function — Returns the execution state for a thread

SYNOPSIS

kern_return_t thread_get_state
(mach_port_t target_thread,
int flavor,
thread_state_t old_state,
mach_msg_type_number_t* old_stateCnt);

DESCRIPTION
The thread_get_state function returns the execution state (for example, the ma-
chine registers) for target_thread. flavor specifies the type of state information
returned.

For old_state, the calling thread supplies an array of integers. On return, old_-
state contains the requested information.

For old_stateCnt, the calling thread specifies the maximum number of integers
in old_state. On return, old_stateCnt contains the actual number of integers in
old_state.

The format of the data returned is machine specific; it is defined in <mach/
thread_status.h>.

PARAMETERS

target_thread
[in scalar] The thread for which the execution state is to be returned.
The calling thread cannot specify itself.

flavor
[in scalar] The type of execution state to be returned. Valid values cor-
respond to supported machined architectures.

old_state
[out array of int] Array of state information for the specified thread.

old_stateCnt
[pointer to in/out scalar] The size of the state array. The maximum size
is defined by THREAD_STATE_MAX.

172 Mach 3 Kernel Interfaces

Thread Interface

RETURN VALUE

KERN_SUCCESS
The state has been returned.

KERN_INVALID_ARGUMENT
target_thread is not a valid thread, or specifies the calling thread, or fla-
vor is not a valid type.

MIG_ARRAY_TOO_LARGE
The returned array is too large for old_state. The function fills old_-
state and sets old_stateCnt to the number of elements that would have
been returned if there had been enough space.

RELATED INFORMATION
Functions: task_info, thread_info, thread_set_state.

Mach 3 Kernel Interfaces 173

thread_info

thread_info

Function — Returns information about a thread

SYNOPSIS

kern_return_t thread_info
(mach_port_t target_thread,
int flavor,
thread_info_t thread_info,
mach_msg_type_number_t* thread_infoCnt);

DESCRIPTION
The thread_info function returns an information array of type flavor.

For thread_info, the calling thread supplies an array of integers. On return,
thread_info contains the requested information.

For thread_infoCnt, the calling thread specifies the maximum number of inte-
gers in thread_info. On return, thread_infoCnt contains the actual number of in-
tegers in thread_info.

Currently, THREAD_BASIC_INFO and THREAD_SCHED_INFO are the only
types of information supported. The size is defined by THREAD_BASIC_IN-
FO_COUNT or THREAD_SCHED_INFO_COUNT, respectively.

PARAMETERS

target_thread
[in scalar] The thread for which the information is to be returned.

flavor
[in scalar] The type of information to be returned. Valid values are:

THREAD_BASIC_INFO
Returns basic information about the thread, such as the
thread’s run state and suspend count.

THREAD_SCHED_INFO
Returns scheduling information about the thread, such as pri-
ority and scheduling policy.

thread_info
[out array of int] Information about the specified thread.

174 Mach 3 Kernel Interfaces

Thread Interface

thread_infoCnt
[pointer to in/out scalar] The size of the information structure. The
maximum size is defined by THREAD_INFO_MAX. Possible values
are THREAD_BASIC_INFO_COUNT (for THREAD_BASIC_INFO)
and THREAD_SCHED_INFO_COUNT (for THREAD_SCHED_IN-
FO).

RETURN VALUE

KERN_SUCCESS
The thread information has been returned.

KERN_INVALID_ARGUMENT
target_thread is not a valid thread or flavor is not a valid type.

MIG_ARRAY_TOO_LARGE
The returned array is too large for thread_info. The function fills
thread_info and sets thread_infoCnt to the number of elements that
would have been returned if there had been enough space.

RELATED INFORMATION
Functions: task_info, task_threads, thread_get_special_port, thread_get_-
state, thread_set_special_port, thread_set_state.

Data Structures: thread_basic_info, thread_sched_info.

Mach 3 Kernel Interfaces 175

thread_max_priority

thread_max_priority

Function — Sets the maximum scheduling priority for a thread

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t thread_max_priority
(mach_port_t thread,
mach_port_t processor_set,
int priority);

DESCRIPTION
The thread_max_priority function sets the maximum scheduling priority for
thread.

Threads have three priorities associated with them by the system:

• A priority value which can be set by the thread to any value up to a maxi-
mum priority. Newly created threads obtain their priority from their task.

• A maximum priority value which can be raised only via privileged operation
so that users may not unfairly compete with other users in their processor
set. Newly created threads obtain their maximum priority from that of their
assigned processor set.

• A scheduled priority value which is used to make scheduling decisions for
the thread. This value is determined on the basis of the user priority value by
the scheduling policy (for timesharing, this means adding an increment de-
rived from CPU usage).

This function changes the maximum priority for the thread. Because this func-
tion requires the presentation of the corresponding processor set control port,
this call can reset the maximum priority to any legal value.

PARAMETERS

thread
[in scalar] The thread whose maximum scheduling priority is to be set.

processor_set
[in scalar] The control port for the processor set to which the thread is
currently assigned.

priority
[in scalar] The new maximum priority for the thread.

176 Mach 3 Kernel Interfaces

Thread Interface

RETURN VALUE

KERN_SUCCESS
The priority has been set.

KERN_INVALID_ARGUMENT
thread is not a valid thread, or processor_set does not name the proces-
sor set to which thread is currently assigned.

RELATED INFORMATION
Functions: thread_priority, thread_policy, task_priority, processor_set_-
max_priority .

Mach 3 Kernel Interfaces 177

thread_policy

thread_policy

Function — Sets the scheduling policy to apply to a thread

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t thread_policy
(mach_port_t thread,
int policy,
int data);

DESCRIPTION
The thread_policy function sets the scheduling policy to be applied to thread.

PARAMETERS

thread
[in scalar] The thread scheduling policy is to be set.

policy
[in scalar] Policy to be set. The values currently defined are POLICY_-
TIMESHARE and POLICY_FIXEDPRI.

data
[in scalar] Policy specific data. Currently, this value is used only for
POLICY_FIXEDPRI, in which case it is the quantum to be used (in
milliseconds); to be meaningful, this value must be a multiple of the ba-
sic system quantum (which can be obtained from host_info).

RETURN VALUE

KERN_SUCCESS
The policy has been set.

KERN_INVALID_ARGUMENT
thread is not a valid thread, or policy is not a recognized scheduling
policy value.

KERN_FAILURE
The processor set to which thread is currently assigned does not permit
policy.

178 Mach 3 Kernel Interfaces

Thread Interface

RELATED INFORMATION
Functions: processor_set_policy_enable, processor_set_policy_disable.

Mach 3 Kernel Interfaces 179

thread_priority

thread_priority

Function — Sets the scheduling priority for a thread

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t thread_priority
(mach_port_t thread,
int priority,
boolean_t set_max);

DESCRIPTION
The thread_priority function sets the scheduling priority for thread.

PARAMETERS

thread
[in scalar] The thread whose scheduling priority is to be set.

priority
[in scalar] The new priority for the thread.

set_max
[in scalar] True if the thread’s maximum priority should also be set.

NOTES
Threads have three priorities associated with them by the system:

• A priority value which can be set by the thread to any value up to a maxi-
mum priority. Newly created threads obtain their priority from their task.

• A maximum priority value which can be raised only via privileged operation
so that users may not unfairly compete with other users in their processor
set. Newly created threads obtain their maximum priority from that of their
assigned processor set.

• A scheduled priority value which is sued to make scheduling decisions for
the thread. This value is determined on the basis of the user priority value by
the scheduling policy (for timesharing, this means adding an increment de-
rived from CPU usage).

This function changes the priority and optionally the maximum priority (if set_-
max is TRUE) for thread. Priorities range from 0 to 31, where lower numbers
denote higher priorities. If the new priority is higher than the priority of the cur-

180 Mach 3 Kernel Interfaces

Thread Interface

rent thread, preemption may occur as a result of this call. This call will fail if
priority is greater than the current maximum priority of the thread. As a result,
this call can only lower the value of a thread’s maximum priority.

RETURN VALUE

KERN_SUCCESS
The priority has been set.

KERN_INVALID_ARGUMENT
thread is not a valid thread, or the priority value is out of range for pri-
ority values.

KERN_FAILURE
The requested operation would violate the thread’s maximum priority.

RELATED INFORMATION
Functions: thread_max_priority, thread_policy, task_priority, proces-
sor_set_max_priority.

Mach 3 Kernel Interfaces 181

thread_resume

thread_resume

Function — Resumes a thread

SYNOPSIS

kern_return_t thread_resume
(mach_port_t target_thread);

DESCRIPTION
The thread_resume function decrements the suspend count for target_thread
by one. The thread is resumed if its suspend count goes to zero. If the suspend
count is still positive, you must repeat thread_resume until the count reaches
zero.

PARAMETERS

target_thread
[in scalar] The thread to be resumed.

RETURN VALUE

KERN_SUCCESS
The thread’s suspend count has been decremented.

KERN_FAILURE
The thread’s suspend count is already at zero. A suspend count must be
either zero or positive.

KERN_INVALID_ARGUMENT
target_thread is not a valid thread.

RELATED INFORMATION
Functions: task_resume, task_suspend, thread_create, thread_info, thread_-
suspend, thread_terminate.

182 Mach 3 Kernel Interfaces

Thread Interface

thread_set_special_port

Function — Sets a special port for a thread

SYNOPSIS

kern_return_t thread_set_special_port
(mach_port_t thread,
int which_port,
mach_port_t special_port);

DESCRIPTION
The thread_set_special_port function sets a special port belonging to thread.

MACRO FORMS
thread_set_exception_port

kern_return_t thread_set_exception_port
(mach_port_t thread,
mach_port_t special_port)

⇒ thread_set_special_port (thread, THREAD_EXCEPTION_PORT,
special_port)

thread_set_kernel_port
kern_return_t thread_set_kernel_port

(mach_port_t thread,
mach_port_t special_port)

⇒ thread_set_special_port (thread, THREAD_KERNEL_PORT,
special_port)

PARAMETERS

thread
[in scalar] The thread for which to set the port.

which_port
[in scalar] The special port to be set. Valid values are:

THREAD_EXCEPTION_PORT
The thread’s exception port. Used to receive exception mes-
sages from the kernel.

THREAD_KERNEL_PORT
The thread’s kernel port. Used by the kernel to receive mes-
sages from the thread.

Mach 3 Kernel Interfaces 183

thread_set_special_port

special_port
[in scalar] The value for the port.

RETURN VALUE

KERN_SUCCESS
The port was set.

KERN_INVALID_ARGUMENT
thread is not a valid thread or which_port is not a valid port selector.

RELATED INFORMATION
Functions: mach_thread_self, task_get_special_port, task_set_special_port,
thread_create, thread_get_special_port.

184 Mach 3 Kernel Interfaces

Thread Interface

thread_set_state

Function — Sets the execution state for a thread

SYNOPSIS

kern_return_t thread_set_state
(mach_port_t target_thread,
int flavor,
thread_state_t new_state,
mach_msg_type_number_t new_stateCnt);

DESCRIPTION
The thread_set_state function sets the execution state (for example, the ma-
chine registers) for target_thread. flavor specifies the type of state to set.

For new_state, the calling thread supplies an array of integers.

For new_stateCnt, the calling thread specifies the maximum number of integers
in new_state.

The format of the state to set is machine specific; it is defined in <mach/
thread_status.h>.

PARAMETERS

target_thread
[in scalar] The thread for which to set the execution state. The calling
thread cannot specify itself.

flavor
[in scalar] The type of state to set. Valid values correspond to support-
ed machine architecture features.

new_state
[pointer to in array of int] Array of state information for the specified
thread.

new_stateCnt
[in scalar] The size of the state array. The maximum size is defined by
THREAD_STATE_MAX.

RETURN VALUE

KERN_SUCCESS
The state has been set.

Mach 3 Kernel Interfaces 185

thread_set_state

KERN_INVALID_ARGUMENT
target_thread is not a valid thread, or specifies the calling thread, or fla-
vor is not a valid type.

MIG_ARRAY_TOO_LARGE
The state array is too large for new_state. The function fills new_state
and sets new_stateCnt to the number of elements that would have been
returned if there had been enough space.

RELATED INFORMATION
Functions: task_info, thread_get_state, thread_info.

186 Mach 3 Kernel Interfaces

Thread Interface

thread_suspend

Function — Suspends a thread

SYNOPSIS

kern_return_t thread_suspend
(mach_port_t target_thread);

DESCRIPTION
The thread_suspend function increments the suspend count for target_thread
and prevents the thread from executing any more user-level instructions.

In this context, a user-level instruction can be either a machine instruction exe-
cuted in user mode or a system trap instruction, including a page fault. If a
thread is currently executing within a system trap, the kernel code may continue
to execute until it reaches the system return code or it may suspend within the
kernel code. In either case, the system trap returns when the thread resumes.

To resume a suspended thread, use thread_resume. If the suspend count is
greater than one, you must issue thread_resume that number of times.

PARAMETERS

target_thread
[in scalar] The thread to be suspended.

CAUTIONS
Unpredictable results may occur if a program suspends a thread and alters its
user state so that its direction is changed upon resuming. Note that the thread_-
abort function allows a system call to be aborted only if it is progressing in a
predictable way.

RETURN VALUE

KERN_SUCCESS
The thread has been suspended.

KERN_INVALID_ARGUMENT
target_thread is not a valid thread.

RELATED INFORMATION
Functions: task_resume, task_suspend, thread_abort, thread_get_state,
thread_info, thread_resume, thread_set_state, thread_terminate.

Mach 3 Kernel Interfaces 187

thread_switch

thread_switch

System Trap — Cause context switch with options

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t thread_switch
(mach_port_t new_thread,
int option,
int time);

DESCRIPTION
The thread_switch function provides low-level access to the scheduler’s con-
text switching code. new_thread is a hint that implements hand-off scheduling.
The operating system will attempt to switch directly to the new thread (bypass-
ing the normal logic that selects the next thread to run) if possible. Since this is
a hint, it may be incorrect; it is ignored if it doesn’t specify a thread on the same
host as the current thread or if the scheduler cannot switch to that thread (i.e.,
not runable or already running on another processor). In this case, the normal
logic to select the next thread to run is used; the current thread may continue
running if there is no other appropriate thread to run.

The option argument specifies the interpretation and use of time. The possible
values (from <mach/thread_switch.h>) are:

SWITCH_OPTION_NONE
The time argument is ignored.

SWITCH_OPTION_WAIT
The thread is blocked for the specified time. This wait is cannot be can-
celed by thread_resume; only thread_abort can terminate this wait.

SWITCH_OPTION_DEPRESS
The thread’s priority is depressed to the lowest possible value for time.
The priority depression is aborted when time has passed, when the cur-
rent thread is next run (either via hand-off scheduling or because the
processor set has nothing better to do), or when thread_abort or thre-
ad_depress_abort is applied to the current thread. Changing the
thread’s priority (via thread_priority) will not affect this depression.

The minimum time and units of time can be obtained as the min_timeout value
from the HOST_SCHED_INFO flavor of host_info.

188 Mach 3 Kernel Interfaces

Thread Interface

PARAMETERS

new_thread
[in scalar] Thread to which the processor should switch context.

option
[in scalar] Options applicable to the context switch.

time
[in scalar] Time duration during which the thread should be affected by
option.

NOTES
thread_switch is often called when the current thread can proceed no further
for some reason; the various options and arguments allow information about
this reason to be transmitted to the kernel. The new_thread argument (hand-off
scheduling) is useful when the identity of the thread that must make progress be-
fore the current thread runs again is known. The SWITCH_OPTION_WAIT op-
tion is used when the amount of time that the current thread must wait before it
can do anything useful can be estimated and is fairly short, especially when the
identity of the thread for which this thread must wait is not known.

CAUTIONS
Users should beware of calling thread_switch with an invalid hint (e.g.,
THREAD_NULL) and no option. Because the time-sharing scheduler varies the
priority of threads based on usage, this may result in a waste of CPU time if the
thread that must be run is of lower priority. The use of the SWITCH_OPTION_-
DEPRESS option in this situation is highly recommended.

thread_switch ignores policies. Users relying on the preemption semantics of a
fixed time policy should be aware that thread_switch ignores these semantics;
it will run the specified new_thread independent of its priority and the priority
of any threads that could run instead.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_ARGUMENT
new_thread is not a valid thread, or option is not a recognized option.

RELATED INFORMATION
Functions: swtch, swtch_pri, thread_abort, thread_depress_abort.

Mach 3 Kernel Interfaces 189

thread_terminate

thread_terminate

Function — Destroys a thread

SYNOPSIS

kern_return_t thread_terminate
(mach_port_t target_thread);

DESCRIPTION
The thread_terminate function kills creates target_thread.

PARAMETERS

target_thread
[in scalar] The thread to be destroyed.

RETURN VALUE

KERN_SUCCESS
The thread has been killed.

KERN_INVALID_ARGUMENT
target_thread is not a valid thread.

RELATED INFORMATION
Functions: task_terminate, task_threads, thread_create, thread_resume,
thread_suspend.

190 Mach 3 Kernel Interfaces

Thread Interface

thread_wire

Function — Marks the thread as privileged with respect to kernel resources

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t thread_wire
(mach_port_t host_priv,
mach_port_t thread,
boolean_t wired);

DESCRIPTION
The thread_wire function marks the thread as “wired”. A “wired” thread is al-
ways eligible to be scheduled and can consume physical memory even when
free memory is scarce. This property should be assigned to threads in the de-
fault page-out path. Threads not in the default page-out path should not have
this property to prevent the kernel’s free list of pages from being exhausted.

PARAMETERS

host_priv
[in scalar] The privileged control port for the host on which the thread
executes.

thread
[in scalar] The thread to be wired.

wired
[in scalar] TRUE if the thread is to be wired.

RETURN VALUE

KERN_SUCCESS
The thread is wired.

KERN_INVALID_ARGUMENT
thread is not a valid thread or host_priv is not the control port for the
host on which thread executes.

RELATED INFORMATION
Functions: vm_wire.

Mach 3 Kernel Interfaces 191

CHAPTER 7 Task Interface

This chapter discusses the specifics of the kernel’s task interfaces. This includes func-
tions that return status information for a task. Also included are functions that operate
upon all or a set of threads within a task.

192 Mach 3 Kernel Interfaces

Task Interface

mach_sample_task

Function — Perform periodic PC sampling for a task

SYNOPSIS

kern_return_t mach_sample_task
(mach_port_t task,
mach_port_t reply_port,
mach_port_t sample_task);

DESCRIPTION
The mach_sample_task function causes the program counter (PC) of the speci-
fied sample_task (actually, all of the threads within sample_task) to be sampled
periodically (whenever one of the threads happens to be running at the time of
the kernel’s “hardclock” interrupt). The set of PC sample values obtained are
saved in buffers which are sent to the specified reply_port.

PARAMETERS

task
[in scalar] Random task port on the same node as sample_task. (not
used)

reply_port
[in scalar] Port to which PC sample buffers are sent. A value of
MACH_PORT_NULL stops PC sampling for the task.

sample_task
[in scalar] Task whose threads’ PC are to be sampled

NOTES
Once PC sampling (profiling) is enabled for a task, the kernel will, at random
times, send a buffer full of PC samples to the specified reply_port. These buff-
ers have the following format:

[1] struct message
[2] {
[3] mach_msg_header_t head;
[4] mach_msg_type_t type;
[5] int arg [SIZE_PROF_BUFFER+1];
[6] };

The message ID is 666666. (SIZE_PROF_BUFFER is defined in mach/profil-
param.h). arg [SIZE_PROF_BUFFER] specifies the number of values actually

Mach 3 Kernel Interfaces 193

mach_sample_task

sent. If this value is less than SIZE_PROF_BUFFER, it means that this is the
last buffer to be sent (PC sampling had been turned off for the task).

RETURN VALUE

KERN_SUCCESS
PC sampling has been enabled/disabled.

KERN_INVALID_ARGUMENT
task, reply_port, or sample_task are not valid

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

RELATED INFORMATION
Functions: mach_sample_thread.

194 Mach 3 Kernel Interfaces

Task Interface

mach_task_self

System Trap — Returns the task self port

LIBRARY
#include <mach/mach_traps.h>

SYNOPSIS

mach_port_t mach_task_self
();

DESCRIPTION
The mach_task_self function returns send rights to the task’s own port.

The include file <mach_init.h> included by <mach.h> redefines this function
call to simply return the value mach_task_self_, cached by the Mach run-time.

PARAMETERS
None

RETURN VALUE
Send rights to the task’s port.

RELATED INFORMATION
Functions: task_info.

Mach 3 Kernel Interfaces 195

task_create

task_create

Function — Creates a task

SYNOPSIS

kern_return_t task_create
(mach_port_t parent_task,
boolean_t inherit_memory,
mach_port_t* child_task);

DESCRIPTION
The task_create function creates a new task from parent_task and returns the
name of the new task in child_task. The child task acquires shared or copied
parts of the parent’s address space (see vm_inherit). The child task initially con-
tains no threads.

The child task receives the three following special ports, which are created or
copied for it at task creation:

• task_kernel_port — The port by which the kernel knows the new child
task. The child task holds a send right for this port. The port name is also re-
turned to the calling task.

• task_bootstrap_port — The port to which the child task can send a mes-
sage requesting return of any system service ports that it needs (for example,
a port to the Network Name Server or the Environment Manager). The child
task inherits a send right for this port from the parent task. The child task
can use task_get_special_port to change this port.

• task_exception_port — A default exception port for the child task, inherit-
ed from the parent task. The exception port is the port to which the kernel
sends exception messages. Exceptions are synchronous interruptions to the
normal flow of program control caused by the program itself. Some excep-
tions are handled transparently by the kernel, but others must be reported to
the program. The child task, or any one of its threads, can change the default
exception port to take an active role in exception handling (see
task_get_special_port or thread_get_special_port).

The child task inherits the PC sampling state of the parent.

PARAMETERS

parent_task
[in scalar] The task from which to draw the child task’s port rights, re-
source limits, and address space.

196 Mach 3 Kernel Interfaces

Task Interface

inherit_memory
[in scalar] Address space inheritance indicator. If true, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_task
[out scalar] The kernel-assigned name for the new task.

RETURN VALUE

KERN_SUCCESS
A new task has been created.

KERN_INVALID_ARGUMENT
parent_task is not a valid task port.

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

RELATED INFORMATION
Functions: task_get_special_port, task_resume, task_set_special_port, task_-
suspend, task_terminate, task_threads, thread_create, thread_resume,
vm_inherit , mach_sample_task.

Mach 3 Kernel Interfaces 197

task_get_emulation_vector

task_get_emulation_vector

Function — Return user-level handlers for system calls.

SYNOPSIS

kern_return_t task_get_emulation_vector
(mach_port_t task,
int* vector_start,
emulation_vector_t* emulation_vector,
mach_msg_type_number_t* emulation_vector_count);

DESCRIPTION
The task_get_emulation_vector function returns the user-level syscall handler
entrypoint addresses.

PARAMETERS

task
[in scalar] The task for which the system call handler addresses are de-
sired.

vector_start
[out scalar] The syscall number corresponding to the first element of
emulation_vector.

emulation_vector
[out pointer to dynamic array of vm_offset_t] Pointer to the returned ar-
ray of routine entrypoints for the system calls starting with syscall
number vector_start.

emulation_vector_count
[out scalar] The number of entries filled by the kernel.

RETURN VALUE

KERN_SUCCESS
The emulation handler addresses were returned.

EML_BAD_TASK
task is not a valid task.

RELATED INFORMATION
Functions: task_set_emulation, task_set_emulation_vector.

198 Mach 3 Kernel Interfaces

Task Interface

task_get_special_port

Function — Returns a send right to a special port

SYNOPSIS

kern_return_t task_get_special_port
(mach_port_t task,
int which_port,
mach_port_t* special_port);

DESCRIPTION
The task_get_special_port function returns a send right for a special port be-
longing to task.

The task kernel port is a port for which the kernel holds the receive right. The
kernel uses this port to identify the task.

If one task has a send right for the kernel port of another task, it can use the port
to perform kernel operations for the other task. Send rights for a kernel port nor-
mally are held only by the task to which the port belongs, or by the task’s parent
task. Using the mach_msg function, however, any task can pass a send right for
its kernel port to another task.

MACRO FORMS
task_get_bootstrap_port

kern_return_t task_get_bootstrap_port
(mach_port_t task,
mach_port_t* special_port)

⇒ task_get_special_port (task, TASK_BOOTSTRAP_PORT,
special_port)

task_get_exception_port
kern_return_t task_get_exception_port

(mach_port_t task,
mach_port_t* special_port)

⇒ task_get_special_port (task, TASK_EXCEPTION_PORT,
special_port)

task_get_kernel_port
kern_return_t task_get_kernel_port

(mach_port_t task,
mach_port_t* special_port)

⇒ task_get_special_port (task, TASK_KERNEL_PORT,
special_port)

Mach 3 Kernel Interfaces 199

task_get_special_port

PARAMETERS

task
[in scalar] The task for which to return the port’s send right.

which_port
[in scalar] The special port for which the send right is requested. Valid
values are:

TASK_KERNEL_PORT
The port used to name this task. Used to send messages that
affect the task.

TASK_BOOTSTRAP_PORT
The task’s bootstrap port. Used to send messages requesting
return of other system service ports.

TASK_EXCEPTION_PORT
The task’s exception port. Used to receive exception messages
from the kernel.

special_port
[out scalar] The returned value for the port.

RETURN VALUE

KERN_SUCCESS
The port was returned.

KERN_INVALID_ARGUMENT
task is not a valid task or which_port is not a valid port selector.

RELATED INFORMATION
Functions: mach_task_self, task_create, task_set_special_port, thread_-
get_special_port, thread_set_special_port.

200 Mach 3 Kernel Interfaces

Task Interface

task_info

Function — Returns information about a task

SYNOPSIS

kern_return_t task_info
(mach_port_t target_task,
int flavor,
task_info_t task_info,
mach_msg_type_number_t* task_infoCnt);

DESCRIPTION
The task_info function returns an information array of type flavor.

For task_info, the calling task or thread supplies an array of integers. On return,
task_info contains the requested information.

For task_infoCnt, the calling task or thread specifies the maximum number of in-
tegers in task_info. On return, task_infoCnt contains the actual number of inte-
gers in task_info.

Currently, TASK_BASIC_INFO and TASK_THREAD_TIMES_INFO are the
only types of information supported. Their sizes are defined by TASK_BA-
SIC_INFO_COUNT and TASK_THREAD_TIMES_INFO_COUNT, respective-
ly.

PARAMETERS

target_task
[in scalar] The task for which the information is to be returned.

flavor
[in scalar] The type of information to be returned. Valid values are:

TASK_BASIC_INFO
Returns basic information about the task, such as the task’s
suspend count and number of resident pages.

TASK_THREAD_TIMES_INFO
Returns system and user space run-times for live threads.

task_info
[out array of int] Information about the specified task.

Mach 3 Kernel Interfaces 201

task_info

task_infoCnt
[pointer to in/out scalar] The size of the information structure. The
maximum size is defined by TASK_INFO_MAX. Currently, the only
valid values are TASK_BASIC_INFO_COUNT (for TASK_BA-
SIC_INFO) and TASK_THREAD_TIMES_INFO_COUNT (for
TASK_THREAD_TIMES_INFO).

RETURN VALUE

KERN_SUCCESS
The task information has been returned.

KERN_INVALID_ARGUMENT
target_task is not a valid task or flavor is not a valid type.

MIG_ARRAY_TOO_LARGE
The returned array is too large for task_info. The function fills task_in-
fo and sets task_infoCnt to the number of elements that would have
been returned if there had been enough space.

RELATED INFORMATION
Functions: task_get_special_port, task_set_special_port, task_threads,
thread_info, thread_get_state, thread_set_state.

Data Structures: task_basic_info, task_thread_times_info.

202 Mach 3 Kernel Interfaces

Task Interface

task_priority

Function — Sets the scheduling priority for a task

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t task_priority
(mach_port_t task,
int priority,
boolean_t change_threads);

DESCRIPTION
The task_priority function sets the scheduling priority for task. The priority of
a task is used only when creating new threads. A new thread’s priority is set to
that of the enclosing task’s priority. Changing the priority of a task does not af-
fect the priority of the enclosed threads unless change_threads is TRUE. If this
priority change violates the maximum priority of some threads, as many threads
as possible will be changed and an error code will be returned.

PARAMETERS

task
[in scalar] The task whose scheduling priority is to be set.

priority
[in scalar] The new priority for the task.

change_threads
[in scalar] True if priority of existing threads within the task should
also be changed.

RETURN VALUE

KERN_SUCCESS
The priority has been set.

KERN_INVALID_ARGUMENT
task is not a valid task, or the priority value is out of range for priority
values.

Mach 3 Kernel Interfaces 203

task_priority

KERN_FAILURE
change_threads was TRUE and the attempt to change the priority of
some existing thread within the task failed because the new priority
would violate that thread’s maximum priority.

RELATED INFORMATION
Functions: thread_max_priority, thread_priority, processor_set_max_priori-
ty.

204 Mach 3 Kernel Interfaces

Task Interface

task_resume

Function — Resume a task

SYNOPSIS

kern_return_t task_resume
(mach_port_t target_task);

DESCRIPTION
The task_resume function decrements the suspend count for target_task. If the
task’s suspend count goes to zero, the function resumes any suspended threads
within the task. To resume a given thread, the thread’s own suspend count must
also be zero.

PARAMETERS

target_task
[in scalar] The task to be resumed.

RETURN VALUE

KERN_SUCCESS
The task’s suspend count has been decremented.

KERN_FAILURE
The task’s suspend count is already at zero. A suspend count must be
either zero or positive.

KERN_INVALID_ARGUMENT
target_task is not a valid task.

RELATED INFORMATION
Functions: task_create, task_info, task_suspend, task_terminate, thread_in-
fo, thread_resume, thread_suspend.

Mach 3 Kernel Interfaces 205

task_set_emulation

task_set_emulation

Function — Establish a user-level handler for a system call.

SYNOPSIS

kern_return_t task_set_emulation
(mach_port_t task,
vm_address_t routine_entry_pt,
int syscall_number);

DESCRIPTION
The task_set_emulation function establishes a handler within the task for a par-
ticular system call. When a thread executes a system call with this particular
number, the system call will be redirected to the specified routine within the
task’s address space. This is expected to be an address within the transparent
emulation library.

These emulation handler addresses are inherited by child processes.

PARAMETERS

task
[in scalar] The task for which to establish the system call handler.

routine_entry_pt
[in scalar] The address within the task of the handler for this particular
system call.

syscall_number
[in scalar] The number of the system call to be handled by this handler.

RETURN VALUE

KERN_SUCCESS
The emulation handler was set.

EML_BAD_TASK
task is not a valid task.

EML_BAD_CNT
syscall_number is not an allowed system call number.

RELATED INFORMATION
Functions: task_set_emulation_vector, task_get_emulation_vector.

206 Mach 3 Kernel Interfaces

Task Interface

task_set_emulation_vector

Function — Establishes user-level handlers for system calls.

SYNOPSIS

kern_return_t task_set_emulation_vector
(mach_port_t task,
int vector_start,
emulation_vector_t emulation_vector,
mach_msg_type_number_t emulation_vector_count);

DESCRIPTION
The task_set_emulation_vector function establishes a handler within the task
for a set of system calls. When a thread executes a system call with one of these
numbers, the system call will be redirected to the corresponding routine within
the task’s address space. This is expected to be an address within the transparent
emulation library.

These emulation handler addresses are inherited by child processes.

PARAMETERS

task
[in scalar] The task for which to establish the system call handler.

vector_start
[in scalar] The syscall number corresponding to the first element of em-
ulation_vector.

emulation_vector
[in pointer to array of vm_offset_t] An array of routine entrypoints for
the system calls starting with syscall number vector_start.

emulation_vector_count
[in scalar] The number of elements in emulation_vector.

RETURN VALUE

KERN_SUCCESS
The emulation handler was set.

EML_BAD_TASK
task is not a valid task.

Mach 3 Kernel Interfaces 207

task_set_emulation_vector

EML_BAD_CNT
An element of the vector had a syscall number out of range.

RELATED INFORMATION
Functions: task_set_emulation, task_get_emulation_vector.

208 Mach 3 Kernel Interfaces

Task Interface

task_set_special_port

Function — Sets a special port for a task

SYNOPSIS

kern_return_t task_set_special_port
(mach_port_t task,
int which_port,
mach_port_t special_port);

DESCRIPTION
The task_set_special_port function sets a special port belonging to task.

MACRO FORMS
task_set_bootstrap_port

kern_return_t task_set_bootstrap_port
(mach_port_t task,
mach_port_t special_port)

⇒ task_set_special_port (task, TASK_BOOTSTRAP_PORT,
special_port)

task_set_exception_port
kern_return_t task_set_exception_port

(mach_port_t task,
mach_port_t special_port)

⇒ task_set_special_port (task, TASK_EXCEPTION_PORT,
special_port).

task_set_kernel_port
kern_return_t task_set_kernel_port

(mach_port_t task,
mach_port_t special_port)

⇒ task_set_special_port (task, TASK_KERNEL_PORT,
special_port)

PARAMETERS

task
[in scalar] The task for which to set the port.

which_port
[in scalar] The special port to be set. Valid values are:

Mach 3 Kernel Interfaces 209

task_set_special_port

TASK_BOOTSTRAP_PORT
The task’s bootstrap port. Used to send messages requesting
return of other system service ports.

TASK_EXCEPTION_PORT
The task’s exception port. Used to receive exception messages
from the kernel.

TASK_KERNEL_PORT
The task’s kernel port. Used by the kernel to receive messages
from the task.

special_port
[in scalar] The value for the port.

RETURN VALUE

KERN_SUCCESS
The port was set.

KERN_INVALID_ARGUMENT
task is not a valid task or which_port is not a valid port selector.

RELATED INFORMATION
Functions: task_create, task_get_special_port, exception_raise, mach_task_-
self, thread_get_special_port, thread_set_special_port.

210 Mach 3 Kernel Interfaces

Task Interface

task_suspend

Function — Suspends a task

SYNOPSIS

kern_return_t task_suspend
(mach_port_t target_task);

DESCRIPTION
The task_suspend function increments the suspend count for target_task and
stops all threads within the task. As long as the suspend count is positive, no
newly-created threads can execute. The function does not return until all of the
task’s threads have been suspended.

To resume a suspended task and its threads, use task_resume. If the suspend
count is greater than one, you must issue task_resume that number of times.

PARAMETERS

target_task
[in scalar] The task to be suspended.

RETURN VALUE

KERN_SUCCESS
The task has been suspended.

KERN_INVALID_ARGUMENT
target_task is not a valid task.

RELATED INFORMATION
Functions: task_create, task_info, task_resume, task_terminate, thread_sus-
pend.

Mach 3 Kernel Interfaces 211

task_terminate

task_terminate

Function — Destroys a task

SYNOPSIS

kern_return_t task_terminate
(mach_port_t target_task);

DESCRIPTION
The task_terminate function kills target_task and all its threads, if any. The ker-
nel frees all resources that are in use by the task. The kernel destroys any port
for which the task holds the receive right.

PARAMETERS

target_task
[in scalar] The task to be destroyed.

RETURN VALUE

KERN_SUCCESS
The task has been killed.

KERN_INVALID_ARGUMENT
target_task is not a valid task.

RELATED INFORMATION
Functions: task_create, task_suspend, task_resume, thread_terminate,
thread_suspend.

212 Mach 3 Kernel Interfaces

Task Interface

task_threads

Function — Returns a list of the threads within a task

SYNOPSIS

kern_return_t task_threads
(mach_port_t target_task,
thread_array_t* thread_list,
mach_msg_type_number_t* thread_count);

DESCRIPTION
The task_threads function returns a list of the threads within target_task. The
calling task or thread also receives a send right to the kernel port for each listed
thread.

PARAMETERS

target_task
[in scalar] The task for which the thread list is to be returned.

thread_list
[out pointer to dynamic array of thread_t] The returned list of threads
within target_task, in no particular order.

thread_count
[out scalar] The returned count of threads in thread_list.

RETURN VALUE

KERN_SUCCESS
The list of threads has been returned.

KERN_INVALID_ARGUMENT
target_task is not a valid task.

RELATED INFORMATION
Functions: thread_create, thread_terminate, thread_suspend.

Mach 3 Kernel Interfaces 213

CHAPTER 8 Host Interface

This chapter discusses the specifics of the kernel’s host interfaces. Included are functions
that return status information for a host, such as kernel statistics.

Note that hosts are named both by a name port, which allows the holder to request infor-
mation about the host, and a control port, which provides full control access. The control
port for a host is provided to the bootstrap task for that host.

214 Mach 3 Kernel Interfaces

Host Interface

host_adjust_time

Function —Gradually change the time

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_adjust_time
(mach_port_t host_priv,
time_value_t new_adjustment,
time_value_t* old_adjustment);

DESCRIPTION
The host_adjust_time function arranges for the time on a specified host to be
gradually changed by an adjustment value.

PARAMETERS

host_priv
[in scalar] The control port the host for which the time is to be set.

new_adjustment
[in structure] New adjustment value.

old_adjustment
[out structure] Old adjustment value.

RETURN VALUE

KERN_SUCCESS
The time is being adjusted.

KERN_INVALID_HOST
The supplied host port is not the privileged host port.

RELATED INFORMATION
Functions: host_get_time, host_set_time.

Data Structures: time_value.

Mach 3 Kernel Interfaces 215

host_get_boot_info

host_get_boot_info

Function — Return operator boot information

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_get_boot_info
(mach_port_t priv_host,
kernel_boot_info_t boot_info);

DESCRIPTION
The host_get_boot_info function returns the boot-time information string sup-
plied by the operator when priv_host was initialized. The constant KERNEL_-
BOOT_INFO_MAX (in mach/host_info.h) should be used to dimension
storage for the returned string.

PARAMETERS

priv_host
[in scalar] The control port for the host for which information is to be
obtained.

boot_info
[out array of char] Character string providing the operator boot info

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
priv_host is not a host control port.

KERN_INVALID_ADDRESS
version points to inaccessible memory.

RELATED INFORMATION
Functions: host_info.

216 Mach 3 Kernel Interfaces

Host Interface

host_get_time

Function —Return the current time.

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_get_time
(mach_port_t host,
time_value_t* current_time);

DESCRIPTION
The host_get_time function returns the current time as seen by that host.

PARAMETERS

host
[in scalar] The name port the host for which the time is to be set.

current_time
[out structure] Returned time value.

RETURN VALUE

KERN_SUCCESS
The current time is returned.

RELATED INFORMATION
Functions: host_adjust_time, host_set_time.

Data Structures: time_value.

Mach 3 Kernel Interfaces 217

host_info

host_info

Function — Returns information about a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_info
(mach_port_t host,
int flavor,
host_info_t host_info,
mach_msg_type_number_t* host_infoCnt);

DESCRIPTION
The host_info function returns selected information about a host, as specified
by flavor. host_info is an array of integers that is supplied by the caller, and
filled with the specified information. host_infoCnt is supplied as the maximum
number of integers in host_info. On return, it contains the actual number of inte-
gers in host_info.

Basic information is defined by HOST_BASIC_INFO. Processor slots of the ac-
tive (available) processors are defined by HOST_PROCESSOR_SLOTS. Addi-
tional information of interest to schedulers is defined by HOST_LOAD_INFO
and HOST_SCHED_INFO.

PARAMETERS

host
[in scalar] The name port for the host for which information is to be ob-
tained.

flavor
[in scalar] The type of statistics desired. Currently, HOST_BASIC_IN-
FO, HOST_LOAD_INFO, HOST_PROCESSOR_SLOTS and
HOST_SCHED_INFO are defined.

host_info
[out array of int] Statistics about the specified host. The relevant struc-
tures are host_basic_info, host_load_info and host_sched_info. In
the case of HOST_PROCESSOR_SLOTS, the return value is an array
of processor slot numbers for active processors.

218 Mach 3 Kernel Interfaces

Host Interface

host_infoCnt
[pointer to in/out scalar] Size of the information structure, in units of
sizeof(int). This should be HOST_BASIC_INFO_COUNT (for
HOST_BASIC_INFO), HOST_SCHED_INFO_COUNT (for
HOST_SCHED_INFO), HOST_LOAD_INFO_COUNT (for HOST_-
LOAD_INFO) and the maximum number of CPUs reported by
HOST_BASIC_INFO (for HOST_PROCESSOR_SLOTS).

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
host is not a host port or flavor is not recognized.

MIG_ARRAY_TOO_LARGE
Returned info array is too large for host_info. host_info is filled as
much as possible. host_infoCnt is set to the number of elements that
would be returned if there were enough room.

RELATED INFORMATION
Functions: host_get_boot_info, host_kernel_version, host_processors, pro-
cessor_info.

Data Structures: host_basic_info, host_load_info, host_sched_info

Mach 3 Kernel Interfaces 219

host_kernel_version

host_kernel_version

Function — Returns kernel version information for a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_kernel_version
(mach_port_t host,
kernel_version_t version);

DESCRIPTION
The host_kernel_version function returns the version string compiled into the
kernel executing on host at the time it was built. This describes the version of
the kernel. The constant KERNEL_VERSION_MAX (in mach/host_info.h)
should be used to dimension storage for the returned string if the kernel_ver-
sion_t declaration is not used.

PARAMETERS

host
[in scalar] The name port for the host for which information is to be ob-
tained.

version
[out array of char] Character string describing the kernel version exe-
cuting on host

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
host is not a host port.

KERN_INVALID_ADDRESS
version points to inaccessible memory.

RELATED INFORMATION
Functions: host_info, host_ports, host_processors, processor_info.

220 Mach 3 Kernel Interfaces

Host Interface

host_reboot

Function — Reboot this host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_reboot
(mach_port_t host_priv,
int options);

DESCRIPTION
The host_reboot function reboots the specified host.

PARAMETERS

host_priv
[in scalar] The control port the host to be re-booted.

options
[in scalar] Reboot options. See <sys/reboot.h> for details.

NOTES
If successful, this call will not return.

RETURN VALUE

KERN_NO_ACCESS
The supplied host port is not the privileged host port.

Mach 3 Kernel Interfaces 221

host_set_time

host_set_time

Function — Sets the time

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_set_time
(mach_port_t host_priv,
time_value_t new_time);

DESCRIPTION
The host_set_time function establishes the time on the specified host.

PARAMETERS

host_priv
[in scalar] The control port for the host for which the time is to be set.

new_time
[in structure] Time to be set.

RETURN VALUE

KERN_SUCCESS
The time is set.

KERN_NO_ACCESS
The supplied host port is not the privileged host port.

RELATED INFORMATION
Functions: host_adjust_time, host_get_time.

Data Structures: time_value.

222 Mach 3 Kernel Interfaces

Host Interface

mach_host_self

System Trap — Returns the host self port

LIBRARY
#include <mach/mach_traps.h>

SYNOPSIS

mach_port_t mach_host_self
();

DESCRIPTION
The mach_host_self function returns send rights to the current host’s name port.

PARAMETERS
None

RETURN VALUE
Send rights to the host’s name port.

RELATED INFORMATION
Functions: host_info.

Mach 3 Kernel Interfaces 223

CHAPTER 9 Processor Interface

This chapter discusses the specifics of the kernel’s processor and processor set interfaces.
This includes functions to control processors, change their assignments, assign tasks and
threads to processors, and processor status returning functions.

Note that processor sets have two ports that name them: a name port which allows infor-
mation to be requested about them, and a control port which allows full access. The con-
trol port for a processor set is provided to the creator of the set.

Processors have only a single port that names them. The host control port is needed to ob-
tain these processor ports.

224 Mach 3 Kernel Interfaces

Processor Interface

host_processor_set_priv

Function — Returns a processor set control port for a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_processor_set_priv
(mach_port_t host_priv,
mach_port_t set_name,
mach_port_t* processor_set);

DESCRIPTION
The host_processor_set_priv function returns send rights for the control port
for a specified processor set currently existing on host_priv.

PARAMETERS

host_priv
[in scalar] The control port for the host for which the processor set is
desired.

set_name
[in scalar] The name port for the processor set desired.

processor_set
[out scalar] The returned processor set control port.

RETURN VALUE

KERN_SUCCESS
The port has been returned.

KERN_INVALID_ARGUMENT
host_priv is not a valid host control port.

RELATED INFORMATION
Functions: host_processor_sets, processor_set_create, processor_set_tasks,
processor_set_threads.

Mach 3 Kernel Interfaces 225

host_processor_sets

host_processor_sets

Function — Returns processor set ports for a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_processor_sets
(mach_port_t host,
processor_set_name_array_t* processor_set_list,
mach_msg_type_number_t* processor_set_count);

DESCRIPTION
The host_processor_sets function returns send rights for the name ports for
each processor set currently existing on host.

PARAMETERS

host
[in scalar] The name port for the host for which the processor sets are
desired.

processor_set_list
[out pointer to dynamic array of processor_set_name_t] The set of pro-
cessor set name ports for those currently existing on host; no particular
order is guaranteed.

processor_set_count
[out scalar] The number of processor sets returned.

NOTES
If control ports to the processor sets are needed, use host_processor_set_priv.

processor_set_list is automatically allocated by the kernel, as if by vm_allo-
cate. It is good practice to vm_deallocate this space when it is no longer need-
ed.

RETURN VALUE

KERN_SUCCESS
The ports have been returned.

226 Mach 3 Kernel Interfaces

Processor Interface

KERN_INVALID_ARGUMENT
host is not a valid host.

RELATED INFORMATION
Functions: host_processor_set_priv, processor_set_create, processor_set_-
tasks, processor_set_threads.

Mach 3 Kernel Interfaces 227

host_processors

host_processors

Function — Gets processor ports for a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t host_processors
(mach_port_t host_priv,
processor_array_t* processor_list,
mach_msg_type_number_t* processor_count);

DESCRIPTION
The host_processors function returns an array of send right ports for each pro-
cessor existing on host_priv.

PARAMETERS

host_priv
[in scalar] The control port for the desired host.

processor_list
[out pointer to dynamic array of processor_t] The set of processors ex-
isting on host_priv; no particular order is guaranteed.

processor_count
[out scalar] The number of ports returned in processor_list.

RETURN VALUE

KERN_SUCCESS
The list of ports is returned.

KERN_INVALID_ARGUMENT
host_priv is not a privileged host port.

KERN_INVALID_ADDRESS
processor_count points to invalid memory.

RELATED INFORMATION
Functions: processor_start, processor_exit, processor_info, processor_con-
trol .

228 Mach 3 Kernel Interfaces

Processor Interface

processor_assign

Function — Assign a processor to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_assign
(mach_port_t processor,
mach_port_t new_set,
boolean_t wait);

DESCRIPTION
The processor_assign function assigns processor to the set new_set. After the
assignment is completed, the processor only executes threads that are assigned
to that processor set. Any previous assignment of the processor is nullified. The
master processor cannot be reassigned.

The wait argument indicates whether the caller should wait for the assignment
to be completed or should return immediately. Dedicated kernel threads are
used to perform processor assignment, so setting wait to FALSE allows assign-
ment requests to be queued and performed quicker, especially if the kernel has
more than one dedicated internal thread for processor assignment.

All processors take clock interrupts at all times. Redirection of other device in-
terrupts away from processors assigned to other than the default processor set is
machine dependent.

PARAMETERS

processor
[in scalar] The processor to be assigned.

new_set
[in scalar] The control port for the processor set into which the proces-
sor is to be assigned.

wait
[in scalar] True if the call should wait for the completion of the assign-
ment.

Mach 3 Kernel Interfaces 229

processor_assign

CAUTIONS
Intermediaries that interpose on ports must be sure to interpose on both ports in-
volved in the call if they interpose on either.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
processor is not a processor port, or new_set is not a processor set port
for the same host as processor.

RELATED INFORMATION
Functions: processor_set_create, processor_set_info, task_assign, thread_as-
sign.

230 Mach 3 Kernel Interfaces

Processor Interface

processor_control

Function — Do something to a processor

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_control
(mach_port_t processor,
processor_info_t cmd,
mach_msg_type_number_t count);

DESCRIPTION
The processor_control function allows privileged software to control a proces-
sor in a multi-processor that so allows it. The interpretation of cmd is machine
dependent.

PARAMETERS

processor
[in scalar] The processor to be controlled.

cmd
[pointer to in array of int] An array containing the command to be ap-
plied to the processor.

count
[in scalar] The size of the cmd array.

NOTES
These operations are machine dependent. They may do nothing.

RETURN VALUE

KERN_SUCCESS
The operation was performed.

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

Mach 3 Kernel Interfaces 231

processor_control

KERN_INVALID_ARGUMENT
processor is not a processor port.

KERN_INVALID_ADDRESS
cmd points to inaccessible memory.

RELATED INFORMATION
Functions: processor_start, processor_exit, processor_info, host_processors.

232 Mach 3 Kernel Interfaces

Processor Interface

processor_exit

Function — Exit a processor

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_exit
(mach_port_t processor);

DESCRIPTION
The processor_exit function allows privileged software to exit a processor in a
multi-processor that so allows it. An exited processor is removed from the pro-
cessor set to which it was assigned and ceases to be active. The interpretation of
this operation is machine dependent.

PARAMETERS

processor
[in scalar] The processor to be controlled.

NOTES
This operation is machine dependent. It may do nothing.

CAUTIONS
The ability to restart an exited processor is machine dependent.

RETURN VALUE

KERN_SUCCESS
The operation was performed.

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

KERN_INVALID_ARGUMENT
processor is not a processor port.

Mach 3 Kernel Interfaces 233

processor_exit

RELATED INFORMATION
Functions: processor_control, processor_start, processor_info, host_proces-
sors.

234 Mach 3 Kernel Interfaces

Processor Interface

processor_get_assignment

Function — Get current assignment for a processor

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_get_assignment
(mach_port_t processor,
mach_port_t* assigned_set);

DESCRIPTION
The processor_get_assignment function returns the name port for the proces-
sor set to which a desired processor is currently assigned.

PARAMETERS

processor
[in scalar] The processor whose assignment is desired.

new_set
[out scalar] The name port for the processor set to which processor is
currently assigned.

RETURN VALUE

KERN_SUCCESS
The processor set name was returned.

KERN_INVALID_ARGUMENT
processor is not a processor port.

KERN_INVALID_ADDRESS
assigned_set points to inaccessible memory.

KERN_FAILURE
processor is either shut down of off-line.

RELATED INFORMATION
Functions: processor_assign, processor_set_create, processor_info, task_as-
sign, thread_assign.

Mach 3 Kernel Interfaces 235

processor_info

processor_info

Function — Returns information about a processor.

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_info
(mach_port_t processor,
int flavor,
mach_port_t* host,
processor_info_t processor_info,
mach_msg_type_number_t* processor_infoCnt);

DESCRIPTION
The processor_info function returns selected information for a processor as an
array, as specified by flavor. processor_info is an array of integers that is sup-
plied by the caller, and filled with the specified information. processor_infoCnt
is supplied as the maximum number of integers in processor_info. On return, it
contains the actual number of integers in processor_info.

Basic information is defined by PROCESSOR_BASIC_INFO. Additional infor-
mation is defined by machine-dependent values of flavor.

PARAMETERS

processor
[in scalar] A processor port for which information is desired.

flavor
[in scalar] The type of information requested. Currently, only PRO-
CESSOR_BASIC_INFO is defined.

host
[out scalar] The host on which the processor resides. This is the host
name port.

processor_info
[out array of int] Information about the processor.

processor_infoCnt
[pointer to in/out scalar] Size of the info structure, in units of
sizeof(int). This should be PROCESSOR_BASIC_INFO_COUNT (for
PROCESSOR_BASIC_INFO).

236 Mach 3 Kernel Interfaces

Processor Interface

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
processor is not a processor port, or flavor is not recognized.

MIG_ARRAY_TOO_LARGE
Returned info array is too large for processor_info. processor_info is
filled as much as possible. processor_infoCnt is set to the number of el-
ements that would be returned if there were enough room.

RELATED INFORMATION
Functions: processor_start, processor_exit, processor_control, host_proces-
sors.

Data Structures: processor_basic_info.

Mach 3 Kernel Interfaces 237

processor_set_create

processor_set_create

Function — Creates a new processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_create
(mach_port_t host,
mach_port_t* new_set,
mach_port_t* new_name);

DESCRIPTION
The processor_set_create function creates a new processor set and returns the
two ports associated with it. The port returned in new_set is the control port rep-
resenting the set. It is used to perform operations such as assigning processors,
tasks or threads. The port returned in new_name is the name port which identi-
fies the set, and is used to obtain information about the set.

PARAMETERS

host
[in scalar] The name port for the host on which the set is to be created.

new_set
[out scalar] Control port used for performing operations on the new set.

new_name
[out scalar] Name port used to identify the new set and obtain informa-
tion about it.

RETURN VALUE

KERN_SUCCESS
The set was created.

KERN_INVALID_ARGUMENT
host is not a host port.

KERN_INVALID_ADDRESS
new_set and/or new_name point to inaccessible memory.

238 Mach 3 Kernel Interfaces

Processor Interface

RELATED INFORMATION
Functions: processor_set_destroy, processor_set_info, processor_assign,
task_assign, thread_assign.

Mach 3 Kernel Interfaces 239

processor_set_default

processor_set_default

Function — Returns the default processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_default
(mach_port_t host,
mach_port_t* default_set);

DESCRIPTION
The processor_set_default function returns the name port for the default pro-
cessor set for the specified host. The default processor set is used by all threads,
tasks and processors that are not explicitly assigned to other sets. The port re-
turned can be used to obtain information about this set (such as how many
threads are assigned to it). It cannot be used to perform operations on the set.

PARAMETERS

host
[in scalar] The name port for the host for which the default processor
set is desired.

default_set
[out scalar] The returned name port for the default processor set.

RETURN VALUE

KERN_SUCCESS
The default set has been returned.

KERN_INVALID_ARGUMENT
host was not a host.

KERN_INVALID_ADDRESS
default_set points to inaccessible memory.

RELATED INFORMATION
Functions: processor_set_info, thread_assign, task_assign.

240 Mach 3 Kernel Interfaces

Processor Interface

processor_set_destroy

Function — Destroys a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_destroy
(mach_port_t processor_set);

DESCRIPTION
The processor_set_destroy function destroys the specified processor set. Any
assigned processors, tasks or threads are re-assigned to the default set. The ob-
ject port (not the name port) for the processor set is required.

PARAMETERS

processor_set
[in scalar] The control port for the processor set to be destroyed.

RETURN VALUE

KERN_SUCCESS
The set was destroyed.

KERN_FAILURE
An attempt was made to destroy the default processor set.

KERN_INVALID_ARGUMENT
processor_set is not a processor set control port.

RELATED INFORMATION
Functions: processor_set_create, processor_assign, task_assign, thread_as-
sign.

Mach 3 Kernel Interfaces 241

processor_set_info

processor_set_info

Function — Returns information about a processor set.

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_info
(mach_port_t processor_set,
int flavor,
mach_port_t* host,
processor_set_info_t processor_set_info,
mach_msg_type_number_t* infoCnt);

DESCRIPTION
The processor_set_info function returns selected information for a processor
set as an array, as specified by flavor. processor_set_info is an array of integers
that is supplied by the caller, and filled with the specified information. infoCnt is
supplied as the maximum number of integers in processor_set_info. On return,
it contains the actual number of integers in processor_set_info.

Basic information is defined by PROCESSOR_SET_BASIC_INFO. Scheduling
information is given by PROCESSOR_SET_SCHED_INFO.

PARAMETERS

processor_set
[in scalar] A processor set name or control port for which information
is desired.

flavor
[in scalar] The type of information requested. Currently, PROCES-
SOR_SET_BASIC_INFO and PROCESSOR_SET_SCHED_INFO are
defined.

host
[out scalar] The name port for the host on which the processor resides.

processor_set_info
[out array of int] Information about the processor set.

infoCnt
[pointer to in/out scalar] Size of the info structure, in units of
sizeof(int). This should be PROCESSOR_SET_BASIC_INFO_-

242 Mach 3 Kernel Interfaces

Processor Interface

COUNT (for PROCESSOR_SET_BASIC_INFO) and PROCESSOR_-
SET_SCHED_INFO_COUNT (for PROCESSOR_SCHED_INFO).

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
processor_set is not a processor set port, or flavor is not recognized.

MIG_ARRAY_TOO_LARGE
Returned info array is too large for processor_set_info. processor_set_-
info is filled as much as possible. infoCnt is set to the number of ele-
ments that would be returned if there were enough room.

RELATED INFORMATION
Functions: processor_set_create, processor_set_default, processor_assign,
task_assign, thread_assign.

Data Structures: processor_set_basic_info, processor_set_sched_info.

Mach 3 Kernel Interfaces 243

processor_set_max_priority

processor_set_max_priority

Function — Sets the maximum scheduling priority for a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_max_priority
(mach_port_t processor_set,
int priority,
boolean_t change_threads);

DESCRIPTION
The processor_set_max_priority function sets the maximum scheduling priori-
ty for processor_set. The maximum priority of a processor set is used only
when creating new threads. A new thread’s maximum priority is set to that of its
assigned processor set. When assigned to a processor set, a thread’s maximum
priority is reduced, if necessary, to that of its new processor set; its current prior-
ity is also reduced, as needed. Changing the maximum priority of a processor
set does not affect the priority of the currently assigned threads unless
change_threads is TRUE. If this priority change violates the maximum priority
of some threads, their maximum priorities will be reduced to match.

PARAMETERS

processor_set
[in scalar] The control port for the processor set whose maximum
scheduling priority is to be set.

priority
[in scalar] The new priority for the processor set.

change_threads
[in scalar] True if the maximum priority of existing threads assigned to
this processor set should also be changed.

RETURN VALUE

KERN_SUCCESS
The priority has been set.

244 Mach 3 Kernel Interfaces

Processor Interface

KERN_INVALID_ARGUMENT
processor_set is not a valid processor set, or the priority value is out of
range for priority values.

RELATED INFORMATION
Functions: thread_max_priority, thread_priority, thread_assign.

Mach 3 Kernel Interfaces 245

processor_set_policy_disable

processor_set_policy_disable

Function — Disables a scheduling policy for a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_policy_disable
(mach_port_t processor_set,
int policy,
boolean_t change_threads);

DESCRIPTION
The processor_set_policy_disable function restricts the set of scheduling poli-
cies allowed for processor_set. The set of scheduling policies allowed for a pro-
cessor set is the set of policies allowed to be set for threads assigned to that
processor set. The current set of permitted policies can be obtained from proces-
sor_set_info. Timesharing may not be forbidden for any processor set. This is a
compromise to reduce the complexity of the assign operation; any thread whose
policy is forbidden by its target processor set has its policy reset to timesharing.
Disabling a scheduling policy for a processor set has no effect on threads cur-
rently assigned to that processor set unless change_threads is TRUE, in which
case their policies will be reset to timesharing.

PARAMETERS

processor_set
[in scalar] The control port for the processor set for which a scheduling
policy is to be disabled.

policy
[in scalar] Policy to be disabled. The values currently defined are POLI-
CY_TIMESHARE and POLICY_FIXEDPRI.

change_threads
[in scalar] If true, causes the scheduling policy for all threads currently
running with policy to POLICY_TIMESHARE.

RETURN VALUE

KERN_SUCCESS
The policy has been disabled.

246 Mach 3 Kernel Interfaces

Processor Interface

KERN_INVALID_ARGUMENT
processor_set is not a valid processor set, or policy is not a recognized
scheduling policy value, or an attempt was made to disable timesharing.

RELATED INFORMATION
Functions: processor_set_policy_enable, thread_policy.

Mach 3 Kernel Interfaces 247

processor_set_policy_enable

processor_set_policy_enable

Function — Enables a scheduling policy for a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_policy_enable
(mach_port_t processor_set,
int policy);

DESCRIPTION
The processor_set_policy_enable function extends the set of scheduling poli-
cies allowed for processor_set. The set of scheduling policies allowed for a pro-
cessor set is the set of policies allowed to be set for threads assigned to that
processor set. The current set of permitted policies can be obtained from proces-
sor_set_info.

PARAMETERS

processor_set
[in scalar] The control port for the processor set for which a scheduling
policy is to be enabled.

policy
[in scalar] Policy to be enabled. The values currently defined are POLI-
CY_TIMESHARE and POLICY_FIXEDPRI.

RETURN VALUE

KERN_SUCCESS
The policy has been enabled.

KERN_INVALID_ARGUMENT
processor_set is not a valid processor set, or policy is not a recognized
scheduling policy value.

RELATED INFORMATION
Functions: processor_set_policy_disable, thread_policy.

248 Mach 3 Kernel Interfaces

Processor Interface

processor_set_tasks

Function — Returns a list of tasks assigned to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_tasks
(mach_port_t processor_set,
task_array_t* task_list,
mach_msg_type_number_t* task_count);

DESCRIPTION
The processor_set_tasks function returns send rights to the kernel ports for
each task currently assigned to processor_set.

PARAMETERS

processor_set
[in scalar] A processor set control port for which information is desired.

task_list
[out pointer to dynamic array of task_t] The returned set of ports nam-
ing the tasks currently assigned to processor_set.

task_count
[out scalar] The number of tasks returned in task_list.

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
processor_set is not a processor set port.

RELATED INFORMATION
Functions: processor_set_threads, task_assign, thread_assign.

Mach 3 Kernel Interfaces 249

processor_set_threads

processor_set_threads

Function — Returns a list of threads assigned to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_set_threads
(mach_port_t processor_set,
thread_array_t* thread_list,
mach_msg_type_number_t* thread_count);

DESCRIPTION
The processor_set_threads function returns send rights to the kernel ports for
each thread currently assigned to processor_set.

PARAMETERS

processor_set
[in scalar] A processor set control port for which information is desired.

thread_list
[out pointer to dynamic array of thread_t] The returned set of ports
naming the threads currently assigned to processor_set.

thread_count
[out scalar] The number of threads returned in thread_list.

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
processor_set is not a processor set port.

RELATED INFORMATION
Functions: processor_set_tasks, task_assign, thread_assign.

250 Mach 3 Kernel Interfaces

Processor Interface

processor_start

Function — Start a processor

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t processor_start
(mach_port_t processor);

DESCRIPTION
The processor_start function allows privileged software to start a processor in
a multi-processor that so allows it. A newly started processor is assigned to the
default processor set. The interpretation of this operation is machine dependent.

PARAMETERS

processor
[in scalar] The processor to be controlled.

NOTES
This operation is machine dependent. It may do nothing.

CAUTIONS
The ability to restart an exited processor is machine dependent.

RETURN VALUE

KERN_SUCCESS
The operation was performed.

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

KERN_INVALID_ARGUMENT
processor is not a processor port.

Mach 3 Kernel Interfaces 251

processor_start

RELATED INFORMATION
Functions: processor_control, processor_exit, processor_info, host_proces-
sors.

252 Mach 3 Kernel Interfaces

Processor Interface

task_assign

Function — Assign a task to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t task_assign
(mach_port_t task,
mach_port_t processor_set,
boolean_t assign_threads);

DESCRIPTION
The task_assign function assigns task to the set processor_set. After the assign-
ment is completed, newly created threads within this task will be assigned to
this processor set. Any previous assignment of the task is nullified.

If assign_threads is TRUE, existing threads within the task will also be assigned
to the processor set.

PARAMETERS

task
[in scalar] The task to be assigned.

processor_set
[in scalar] The control port for the processor set into which the task is
to be assigned.

assign_threads
[in scalar] True if this assignment should apply as well to the threads
within the task.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
task is not a task port, or processor_set is not a processor set port for
the same host as task.

Mach 3 Kernel Interfaces 253

task_assign

RELATED INFORMATION
Functions: task_assign_default, task_get_assignment, processor_set_create,
processor_set_info, processor_assign, thread_assign.

254 Mach 3 Kernel Interfaces

Processor Interface

task_assign_default

Function — Assign a task to the default processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t task_assign_default
(mach_port_t task,
boolean_t assign_threads);

DESCRIPTION
The task_assign_default function assigns task to the default processor set. Af-
ter the assignment is completed, newly created threads within this task will be
assigned to this processor set. Any previous assignment of the task is nullified.

If assign_threads is TRUE, existing threads within the task will also be assigned
to the processor set.

This variant of task_assign exists because the control port for the default pro-
cessor set is privileged, and therefore not available to most tasks.

PARAMETERS

task
[in scalar] The task to be assigned.

assign_threads
[in scalar] True if this assignment should apply as well to the threads
within the task.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
task is not a task port.

RELATED INFORMATION
Functions: task_assign, task_get_assignment, processor_set_create, proces-
sor_set_info, thread_assign, processor_assign.

Mach 3 Kernel Interfaces 255

task_get_assignment

task_get_assignment

Function — Returns the processor set to which a task is assigned

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t task_get_assignment
(mach_port_t task,
mach_port_t* processor_set);

DESCRIPTION
The task_get_assignment function returns the name port to the processor set to
which task is currently assigned. This port can only be used to obtain informa-
tion about the processor set.

PARAMETERS

task
[in scalar] The task whose assignment is desired.

processor_set
[out scalar] The name port for the processor set into which the task is
assigned.

RETURN VALUE

KERN_SUCCESS
The assigned set was returned.

KERN_INVALID_ARGUMENT
task is not a task port.

KERN_INVALID_ADDRESS
processor_set points to inaccessible memory.

RELATED INFORMATION
Functions: task_assign, task_assign_default, processor_set_create, proces-
sor_set_info, thread_assign, processor_assign.

256 Mach 3 Kernel Interfaces

Processor Interface

thread_assign

Function — Assign a thread to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t thread_assign
(mach_port_t thread,
mach_port_t processor_set);

DESCRIPTION
The thread_assign function assigns thread to the set processor_set. After the as-
signment is completed, the thread executes only on processors that are assigned
to that processor set. Any previous assignment of the thread is nullified.

PARAMETERS

thread
[in scalar] The thread to be assigned.

processor_set
[in scalar] The name port for the processor set into which the thread is
to be assigned.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
thread is not a thread port, or processor_set is not a processor set port
for the same host as thread.

RELATED INFORMATION
Functions: thread_assign_default, thread_get_assignment, processor_set_-
create, processor_set_info, task_assign, processor_assign.

Mach 3 Kernel Interfaces 257

thread_assign_default

thread_assign_default

Function — Assign a thread to the default processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t thread_assign_default
(mach_port_t thread);

DESCRIPTION
The thread_assign_default function assigns thread to the default processor set.
After the assignment is completed, the thread executes only on processors that
are assigned to that processor set. Any previous assignment of the thread is nulli-
fied. This variant of thread_assign exists because the control port for the de-
fault processor set is privileged, and therefore not available to most tasks.

PARAMETERS

thread
[in scalar] The thread to be assigned.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
thread is not a thread port.

RELATED INFORMATION
Functions: thread_assign, thread_get_assignment, processor_set_create,
processor_set_info, task_assign, processor_assign.

258 Mach 3 Kernel Interfaces

Processor Interface

thread_get_assignment

Function — Returns the processor set to which a thread is assigned

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_t thread_get_assignment
(mach_port_t thread,
mach_port_t* processor_set);

DESCRIPTION
The thread_get_assignment function returns the name port to the processor set
to which thread is currently assigned. This port can only be used to obtain infor-
mation about the processor set.

PARAMETERS

thread
[in scalar] The thread whose assignment is desired.

processor_set
[out scalar] The name port for the processor set into which the thread
is assigned.

RETURN VALUE

KERN_SUCCESS
The assigned set was returned.

KERN_INVALID_ARGUMENT
thread is not a thread port.

KERN_INVALID_ADDRESS
processor_set points to inaccessible memory.

RELATED INFORMATION
Functions: thread_assign, thread_assign_default, processor_set_create, pro-
cessor_set_info, task_assign, processor_assign.

Mach 3 Kernel Interfaces 259

CHAPTER 10 Device Interface

This chapter discusses the specifics of the kernel’s device interfaces. These interfaces pro-
vide read, write and status interfaces to devices.

260 Mach 3 Kernel Interfaces

Device Interface

device_close

Function — De-establish a connection to a device.

LIBRARY
#include <device/device.h>

SYNOPSIS

kern_return_t device_close
(mach_port_t device);

DESCRIPTION
The device_close function decrements the open count for the named device. If
this count reaches zero, the close operation of the device driver is invoked, clos-
ing the device.

PARAMETERS

device
[in scalar] A device port to the device to be closed.

RETURN VALUE

D_SUCCESS
Device was closed.

D_NO_SUCH_DEVICE
device does not name a device port.

RELATED INFORMATION
Functions: device_open.

Mach 3 Kernel Interfaces 261

device_get_status

device_get_status

Function — Return the current device status

LIBRARY
#include <device/device.h>

SYNOPSIS

kern_return_t device_get_status
(mach_port_t device,
int flavor,
dev_status_t status,
mach_msg_type_number_t* status_count);

DESCRIPTION
The device_get_status function returns status information pertaining to an open
device. The possible values for flavor as well as the meaning of the returned sta-
tus information is device dependent.

PARAMETERS

device
[in scalar] A device port to the device to be interrogated.

flavor
[in scalar] The type of status information requested.

status
[out array of int] The returned device status.

status_count
[pointer to in/out scalar] On input, the reserved size of status; on out-
put, the size of the returned device status.

RETURN VALUE

D_SUCCESS
Status was returned.

D_NO_SUCH_DEVICE
Device is not open or operational.

262 Mach 3 Kernel Interfaces

Device Interface

RELATED INFORMATION
Functions: device_set_status.

Mach 3 Kernel Interfaces 263

device_map

device_map

Function — Establish a memory manager representing a device

LIBRARY
#include <device/device.h>

SYNOPSIS

kern_return_t device_map
(mach_port_t device,
vm_prot_t prot,
vm_offset_t offset,
vm_size_t size,
mach_port_t* pager,
int unmap);

DESCRIPTION
The device_map function establishes a memory manager that presents a memo-
ry object representing a device. The resulting port is suitable for use as the pag-
er port in a vm_map call. This call is device dependent.

PARAMETERS

device
[in scalar] A device port to the device to be mapped.

prot
[in scalar] Protection for the device memory.

offset
[in scalar] An offset within the device memory object, in bytes.

size
[in scalar] The size of the device memory object.

pager
[out scalar] The returned abstract memory object port to a memory
manager that represents the device.

unmap
[in scalar] Currently unused.

NOTES
Port rights are maintained as follows:

264 Mach 3 Kernel Interfaces

Device Interface

Abstract memory object port:
The device pager has all rights.

Memory cache control port:
The device pager has only send rights.

Memory cache name port:
The device pager has only send rights. The name port is not even re-
corded.

Regardless how the object is created, the control and name ports are created by
the kernel and passed through the memory management interface.

CAUTIONS
The device pager assumes that access to its memory objects will not be propa-
gated to more that one host, and therefore provides no consistency guarantees
beyond those made by the kernel.

In the event that more than one host attempts to use a device memory object, the
device pager will only record the last set of port names. [This can happen with
only one host if a new mapping is being established while termination of all pre-
vious mappings is taking place.] Currently, the device pager assumes that its cli-
ents adhere to the initialization and termination protocols in the memory
management interface; otherwise, port rights or out-of-line memory from erro-
neous messages may be allowed to accumulate.

RETURN VALUE

KERN_SUCCESS
The device map is established.

D_NO_SUCH_DEVICE
The device is not open or not operational.

RELATED INFORMATION
Functions: vm_map, evc_wait.

Mach 3 Kernel Interfaces 265

device_open

device_open

Function — Establish a connection to a device.

LIBRARY
#include <device/device.h> (device_open)

#include <device/device_request.h> (device_open_request)

#include <device/device_reply.h> (ds_device_open_reply)

SYNOPSIS

kern_return_t device_open
(mach_port_t master_port,
dev_mode_t mode,
dev_name_t name,
mach_port_t* device);

DESCRIPTION
The device_open function opens a device object. The open operation of the de-
vice is invoked, if the device is not already open. The open count for the device
is incremented.

ASYNCHRONOUS FORM
device_open_request

Function — Asynchronously request a connection to a device

kern_return_t device_open_request
(mach_port_t master_port,
mach_port_t reply_port,
dev_mode_t mode,
dev_name_t name);

ds_device_open_reply
Server Interface — Receive the reply from an asynchronous open

kern_return_t ds_device_open_reply
(mach_port_t reply_port,
kern_return_t return_code,
mach_port_t device);

266 Mach 3 Kernel Interfaces

Device Interface

PARAMETERS

master_port
[in scalar] The master device port. This port is provided to the boot-
strap task.

reply_port
[in scalar] The port to which a reply is to be sent when the device is
open.

mode
[in scalar] Opening mode. This is the bit-wise OR of the following val-
ues:

D_READ
Read access

D_WRITE
Write access

D_NODELAY
Do not delay on open

name
[pointer to in array of char] Name of the device to open.

return_code
[in scalar] Status of the open.

device
[out scalar] The returned device port.

RETURN VALUE

D_SUCCESS
Device was opened.

D_INVALID_OPERATION
master_port is not the master device port.

D_WOULD_BLOCK
The device is busy, but D_NOWAIT was specified in mode.

D_ALREADY_OPEN
The device is already open in a mode incompatible with mode.

D_NO_SUCH_DEVICE
name does not name a known device.

Mach 3 Kernel Interfaces 267

device_open

D_DEVICE_DOWN
The device has been shut down.

KERN_SUCCESS
Returned for device_open_request or ds_device_open_reply, since
these functions do not receive a reply message and have no return val-
ue. Only message transmission errors apply.

RELATED INFORMATION
Functions: device_close, device_reply_server.

268 Mach 3 Kernel Interfaces

Device Interface

device_read

Function — Read a sequence of bytes from a device object.

LIBRARY
#include <device/device.h> (device_read)

#include <device/device_request.h> (device_read_request)

#include <device/device_reply.h> (ds_device_read_reply)

SYNOPSIS

kern_return_t device_read
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted,
io_buf_ptr_t* data,
mach_msg_type_number_t* data_count);

DESCRIPTION
The device_read function reads a sequence of bytes from a device object. The
meaning of recnum as well as the specific operation performed is device depen-
dent.

ASYNCHRONOUS FORM
device_read_request

Function — Asynchronously read data

kern_return_t device_read_request
(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted);

ds_device_read_reply
Server Interface — Receive the reply from an asynchronous read

kern_return_t ds_device_read_reply
(mach_port_t reply_port,
kern_return_t return_code,
io_buf_ptr_t data,
mach_msg_type_number_t data_count);

Mach 3 Kernel Interfaces 269

device_read

PARAMETERS

device
[in scalar] A device port to the device to be read.

reply_port
[in scalar] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait if data is unavailable.

recnum
[in scalar] Record number to be read.

bytes_wanted
[in scalar] Size of data transfer.

return_code
[in scalar] The return status code from the read.

data
[out pointer to dynamic array of bytes] Returned data bytes.

data_count
[out scalar] Number of returned data bytes.

RETURN VALUE

D_SUCCESS
Data was read.

D_NO_SUCH_DEVICE
The device is dead or not completely open.

KERN_SUCCESS
Returned for device_read_request or ds_device_read_reply, since
these functions do not receive a reply message and have no return val-
ue. Only message transmission errors apply.

RELATED INFORMATION
Functions: device_read_inband, device_reply_server.

270 Mach 3 Kernel Interfaces

Device Interface

device_read_inband

Function — Read a sequence of bytes “inband” from a device object.

LIBRARY
#include <device/device.h> (device_read_inband)

#include <device/device_request.h> (device_read_request_inband)

#include <device/device_reply.h> (ds_device_read_reply_inband)

SYNOPSIS

kern_return_t device_read_inband
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted,
io_buf_ptr_inband_t* data,
mach_msg_type_number_t* data_count);

DESCRIPTION
The device_read function reads a sequence of bytes from a device object. The
meaning of recnum as well as the specific operation performed is device depen-
dent. This call differs from device_read in that the returned bytes are returned
“inband” in the reply IPC message.

ASYNCHRONOUS FORM
device_read_request_inband

Function — Asynchronously read data

kern_return_t device_read_request_inband
(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted);

ds_device_read_reply_inband
Server Interface — Receive the reply from an asynchronous read

kern_return_t ds_device_read_reply_inband
(mach_port_t reply_port,
kern_return_t return_code,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_count);

Mach 3 Kernel Interfaces 271

device_read_inband

PARAMETERS

device
[in scalar] A device port to the device to be read.

reply_port
[in scalar] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait if data is unavailable.

recnum
[in scalar] Record number to be read.

bytes_wanted
[in scalar] Size of data transfer.

return_code
[in scalar] The return status code from the read.

data
[out array of bytes] Returned data bytes.

data_count
[out scalar] Number of returned data bytes.

RETURN VALUE

D_SUCCESS
Data was read.

D_NO_SUCH_DEVICE
The device is dead or not completely open.

KERN_SUCCESS
Returned for device_read_request_inband or ds_device_-
read_reply_inband, since these functions do not receive a reply mes-
sage and have no return value. Only message transmission errors apply.

RELATED INFORMATION
Functions: device_read, device_reply_server.

272 Mach 3 Kernel Interfaces

Device Interface

device_set_filter

Function — Names an input filter for a device

LIBRARY
#include <device/device.h>

#include <device/net_status.h>

SYNOPSIS

kern_return_t device_set_filter
(mach_port_t device,
mach_port_t receive_port,
mach_msg_type_name_t receive_port_type,
int priority,
filter_array_t filter,
mach_msg_type_number_t filter_count);

DESCRIPTION
The device_set_filter function provides a means by which selected data appear-
ing at a device interface can be selected and routed to a port.

The filter command list consists of an array of up to NET_MAX_FILTER (un-
signed short) words to be applied to incoming messages to determine if those
messages should be given to a particular input filter.

Each filter command list specifies a sequences of actions which leave a boolean
value on the top of an internal stack. Each word of the command list specifies a
data (push) operation (high order NETF_NBPO bits) as well as a binary opera-
tor (low order NETF_NBPA bits).

The value to be pushed onto the stack is chosen as follows.

NETF_PUSHLIT
Use the next short word of the filter as the value.

NETF_PUSHZERO
Use 0 as the value.

NETF_PUSHWORD+N
Use short word N of the “data” portion of the message as the value.

NETF_PUSHHDR+N
Use short word N of the “header” portion of the message as the value.

Mach 3 Kernel Interfaces 273

device_set_filter

NETF_PUSHIND+N
Pops the top long word from the stack and then uses short word N of
the “data” portion of the message as the value.

NETF_PUSHHDRIND+N
Pops the top long word from the stack and then uses short word N of
the “header” portion of the message as the value.

NETF_PUSHSTK+N
Use long word N of the stack (where the top of stack is long word 0) as
the value.

NETF_NOPUSH
Don’t push a value.

The unsigned value so chosen is promoted to a long word before being pushed.

Once a value is pushed (except for the case of NETF_NOPUSH), the top two
long words of the stack are popped and a binary operator applied to them (with
the old top of stack as the second operand). The result of the operator is pushed
on the stack. These operators are:

NETF_NOP
Don’t pop off any values and do no operation.

NETF_EQ
Perform an equal comparison.

NETF_LT
Perform a less than comparison.

NETF_LE
Perform a less than or equal comparison.

NETF_GT
Perform a greater than comparison.

NETF_GE
Perform a greater than or equal comparison.

NETF_AND
Perform a bit-wise boolean AND operation.

NETF_OR
Perform a bit-wise boolean inclusive OR operation.

NETF_XOR
Perform a bit-wise boolean exclusive OR operation.

274 Mach 3 Kernel Interfaces

Device Interface

NETF_NEQ
Perform a not equal comparison.

NETF_LSH
Perform a left shift operation.

NETF_RSH
Perform a right shift operation.

NETF_ADD
Perform an addition.

NETF_SUB
Perform a subtraction.

NETF_COR
Perform an equal comparison. If the comparison is TRUE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

NETF_CAND
Perform an equal comparison. If the comparison is FALSE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

NETF_CNOR
Perform a not equal comparison. If the comparison is FALSE, termi-
nate the filter list. Otherwise, pop the result of the comparison off the
stack.

NETF_CNAND
Perform a not equal comparison. If the comparison is TRUE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

The scan of the filter list terminates when the filter list is emptied, or a NET-
F_C... operation terminates the list. At this time, if the final value of the top of
the stack is TRUE, then the message is accepted for the filter.

PARAMETERS

device
[in scalar] A device port

receive_port
[in scalar] The port to receive the input data that is selected by the filter.

receive_port_type
[in scalar] IPC type of the send right provided to the device; either
MACH_MSG_TYPE_MAKE_SEND or MACH_MSG_TYPE_-
MOVE_SEND.

Mach 3 Kernel Interfaces 275

device_set_filter

priority
[in scalar] Used to order multiple receivers.

filter
[pointer to in array of filter_t] The address of an array of filter values.

filter_count
[in scalar] The size of the filter array.

RETURN VALUE

D_SUCCESS
Device filter set.

D_NO_SUCH_DEVICE
Device is not open or operational.

D_INVALID_OPERATION
No receive_port was supplied.

276 Mach 3 Kernel Interfaces

Device Interface

device_set_status

Function — Sets device status.

LIBRARY
#include <device/device.h>

SYNOPSIS

kern_return_t device_set_status
(mach_port_t device,
int flavor,
dev_status_t status,
mach_msg_type_number_t status_count);

DESCRIPTION
The device_set_status function sets device status. The possible values of flavor
as well as the corresponding meanings are device dependent.

PARAMETERS

device
[in scalar] A device port to the device to be manipulated.

flavor
[in scalar] The type of status information to set.

status
[pointer to in array of int] The status information to set.

status_count
[in scalar] The size of the status information.

RETURN VALUE

D_SUCCESS
Device status was set.

D_NO_SUCH_DEVICE
The device is not open or operational.

RELATED INFORMATION
Functions: device_get_status.

Mach 3 Kernel Interfaces 277

device_write

device_write

Function — Write a sequence of bytes to a device object.

LIBRARY
#include <device/device.h> (device_write)

#include <device/device_request.h> (device_write_request)

#include <device/device_reply.h> (ds_device_write_reply)

SYNOPSIS

kern_return_t device_write
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
io_buf_ptr_t data,
mach_msg_type_number_t data_count,
int* bytes_written);

DESCRIPTION
The device_write function writes a sequence of bytes to a device object. The
meaning of recnum as well as the specific operation performed is device depen-
dent.

ASYNCHRONOUS FORM
device_write_request

Function — Asynchronously write data

kern_return_t device_write_request
(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
io_buf_ptr_t data,
mach_msg_type_number_t data_count);

ds_device_write_reply
Server Interface — Receive the reply from an asynchronous write

kern_return_t ds_device_write_reply
(mach_port_t reply_port,
kern_return_t return_code,
int bytes_written);

278 Mach 3 Kernel Interfaces

Device Interface

PARAMETERS

device
[in scalar] A device port to the device to be written.

reply_port
[in scalar] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait for I/O completion.

recnum
[in scalar] Record number to be written.

data
[pointer to in array of bytes] Data bytes to be written.

data_count
[in scalar] Number of data bytes to be written.

return_code
[in scalar] The return status code from the write.

bytes_written
[out scalar] Size of data transfer.

RETURN VALUE

D_SUCCESS
Data was written.

D_NO_SUCH_DEVICE
The device is dead or not completely open.

KERN_SUCCESS
Returned for device_write_request or ds_device_write_reply, since
these functions do not receive a reply message and have no return val-
ue. Only message transmission errors apply.

RELATED INFORMATION
Functions: device_write_inband, device_reply_server.

Mach 3 Kernel Interfaces 279

device_write_inband

device_write_inband

Function — Write a sequence of bytes “inband” to a device object.

LIBRARY
#include <device/device.h> (device_write_inband)

#include <device/device_request.h> (device_write_request_inband)

#include <device/device_reply.h> (ds_device_write_reply_inband)

SYNOPSIS

kern_return_t device_write_inband
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_count,
int* bytes_written);

DESCRIPTION
The device_write function writes a sequence of bytes to a device object. The
meaning of recnum as well as the specific operation performed is device depen-
dent. This call differs from device_write in that the bytes to be written are sent
“inband” in the request IPC message.

ASYNCHRONOUS FORM
device_write_request_inband

Function — Asynchronously write data

kern_return_t device_write_request_inband
(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_count);

ds_device_write_reply_inband
Server Interface — Receive the reply from an asynchronous write

kern_return_t ds_device_write_reply_inband
(mach_port_t reply_port,
kern_return_t return_code,
int bytes_written);

280 Mach 3 Kernel Interfaces

Device Interface

PARAMETERS

device
[in scalar] A device port to the device to be written.

reply_port
[in scalar] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait for I/O completion.

recnum
[in scalar] Record number to be written.

data
[pointer to in array of bytes] Data bytes to be written.

data_count
[in scalar] Number of data bytes to be written.

return_code
[in scalar] The return status code from the write.

bytes_written
[out scalar] Size of data transfer.

RETURN VALUE

D_SUCCESS
Data was written.

D_NO_SUCH_DEVICE
The device is dead or not completely open.

KERN_SUCCESS
Returned for device_write_request_inband or ds_device_write_re-
ply_inband, since these functions do not receive a reply message and
have no return value. Only message transmission errors apply.

RELATED INFORMATION
Functions: device_write, device_reply_server.

Mach 3 Kernel Interfaces 281

APPENDIX A MIG Server Routines

This appendix describes server message de-multiplexing routines generated by MIG
from the kernel interface definitions of use to a server in handling messages sent from the
kernel.

282 Mach 3 Kernel Interfaces

MIG Server Routines

device_reply_server

Function — Handles messages from a kernel device driver

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

boolean_t device_reply_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The device_reply_server function is the MIG generated server handling func-
tion to handle messages from kernel device drivers. Such messages were sent in
response to the various device_..._request... calls. It is assumed when using
those calls that some task is listening for reply messages on the port named as a
reply port to those calls. The device_reply_server function performs all neces-
sary argument handling for a kernel message and calls one of the device server
functions to interpret the message.

PARAMETERS

in_msg
[pointer to in structure] The device driver message received from the
kernel.

out_msg
[out structure] A reply message. No messages from a device driver ex-
pect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this device handler interface and no other
action was taken.

Mach 3 Kernel Interfaces 283

device_reply_server

RELATED INFORMATION
Functions: ds_device_open_reply, ds_device_write_reply, ds_device_writ-
e_reply_inband, ds_device_read_reply, ds_device_read_reply_inband.

284 Mach 3 Kernel Interfaces

MIG Server Routines

exc_server

Function — Handles kernel messages for an exception handler

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

boolean_t exc_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The exc_server function is the MIG generated server handling function to han-
dle messages from the kernel relating to the occurrence of an exception in a
thread. Such messages are delivered to the exception port set via thread_-
set_special_port or task_set_special_port. When an exception occurs in a
thread, the thread sends an exception message to its exception port, blocking in
the kernel waiting for the receipt of a reply. The exc_server function performs
all necessary argument handling for this kernel message and calls catch_excep-
tion_raise, which should handle the exception. If catch_exception_raise re-
turns KERN_SUCCESS, a reply message will be sent, allowing the thread to
continue from the point of the exception; otherwise, no reply message is sent
and catch_exception_raise must have dealt with the exception thread directly.

PARAMETERS

in_msg
[pointer to in structure] The exception message received from the ker-
nel.

out_msg
[out structure] A reply message.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the exception mechanism and no other
action was taken.

Mach 3 Kernel Interfaces 285

exc_server

RELATED INFORMATION
Functions: thread_set_special_port, task_set_special_port, catch_excep-
tion_raise.

286 Mach 3 Kernel Interfaces

MIG Server Routines

memory_object_default_server

Function — Handles kernel messages for the default memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_t memory_object_default_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The memory_object_default_server function is the MIG generated server han-
dling function to handle messages from the kernel targeted to the default memo-
ry manager. This server function only handles messages unique to the default
memory manager. Messages that are common to all memory managers are han-
dled by memory_object_server.

A memory manager is a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
memory_object_default_server function performs all necessary argument han-
dling for a kernel message and calls one of the default memory manager func-
tions.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

Mach 3 Kernel Interfaces 287

memory_object_default_server

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION
Functions: seqnos_memory_object_default_server, memory_object_server,
memory_object_create, memory_object_data_initialize.

288 Mach 3 Kernel Interfaces

MIG Server Routines

memory_object_server

Function — Handles kernel messages for a memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_t memory_object_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The memory_object_server function is the MIG generated server handling
function to handle messages from the kernel targeted to a memory manager.

A memory manager is a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
memory_object_server function performs all necessary argument handling for
a kernel message and calls one of the memory manager functions to interpret
the message.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

Mach 3 Kernel Interfaces 289

memory_object_server

RELATED INFORMATION
Functions: memory_object_default_server, memory_object_copy, memory_-
object_data_request, memory_object_data_unlock, memory_object_-
data_write, memory_object_data_return, memory_object_init,
memory_object_lock_completed, memory_object_change_completed, mem-
ory_object_terminate, seqnos_memory_object_server.

290 Mach 3 Kernel Interfaces

MIG Server Routines

notify_server

Function — Handle kernel generated IPC notifications

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_t notify_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The notify_server function is the MIG generated server handling function to
handle messages from the kernel corresponding to IPC notifications. Such mes-
sages are delivered to the notification port named in a mach_msg or mach_por-
t_request_notification call. The notify_server function performs all necessary
argument handling for this kernel message and calls the appropriate handling
function. These functions must be supplied by the caller.

PARAMETERS

in_msg
[pointer to in structure] The notification message received from the ker-
nel.

out_msg
[out structure] Not used.

NOTES
The user of this function must also supply a dummy routine do_mach_notify_-
port_deleted, which will never be called, but which is defined as part of Mach
2.5 IPC compatibility.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

Mach 3 Kernel Interfaces 291

notify_server

FALSE
The message did not apply to the notification mechanism and no other
action was taken.

RELATED INFORMATION
Functions: seqnos_notify_server, mach_msg, mach_port_request_notifica-
tion, do_mach_notify_dead_name, do_mach_notify_msg_accepted,
do_mach_notify_no_senders, do_mach_notify_port_deleted, do_mach_noti-
fy_port_destroyed, do_mach_notify_send_once.

292 Mach 3 Kernel Interfaces

MIG Server Routines

seqnos_memory_object_default_server

Function — Handles kernel messages for the default memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_t seqnos_memory_object_default_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The seqnos_memory_object_default_server function is the MIG generated
server handling function to handle messages from the kernel targeted to the de-
fault memory manager. This server function only handles messages unique to
the default memory manager. Messages that are common to all memory manag-
ers are handled by seqnos_memory_object_server.

A memory manager is a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The se-
qnos_memory_object_default_server function performs all necessary argu-
ment handling for a kernel message and calls one of the default memory
manager functions.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

NOTES
seqnos_memory_object_default_server differs from memory_object_de-
fault_server in that it supplies message sequence numbers to the server interfac-
es it calls.

Mach 3 Kernel Interfaces 293

seqnos_memory_object_default_server

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION
Functions: memory_object_default_server, seqnos_memory_object_server,
seqnos_memory_object_create, seqnos_memory_object_data_initialize.

294 Mach 3 Kernel Interfaces

MIG Server Routines

seqnos_memory_object_server

Function — Handles kernel messages for a memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_t seqnos_memory_object_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The seqnos_memory_object_server function is the MIG generated server han-
dling function to handle messages from the kernel targeted to a memory manag-
er.

A memory manager is a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The se-
qnos_memory_object_server function performs all necessary argument han-
dling for a kernel message and calls one of the memory manager functions to
interpret the message.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

NOTES
seqnos_memory_object_server differs from memory_object_server in that it
supplies message sequence numbers to the server interfaces.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

Mach 3 Kernel Interfaces 295

seqnos_memory_object_server

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION
Functions: seqnos_memory_object_default_server, seqnos_memory_object_-
copy, seqnos_memory_object_data_request, seqnos_memory_object_da-
ta_unlock, seqnos_memory_object_data_write,
seqnos_memory_object_data_return, seqnos_memory_object_init, seqnos_-
memory_object_lock_completed, seqnos_seqnos_memory_ob-
ject_change_completed, seqnos_memory_object_terminate,
memory_object_server.

296 Mach 3 Kernel Interfaces

MIG Server Routines

seqnos_notify_server

Function — Handle kernel generated IPC notifications

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_t seqnos_notify_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The seqnos_notify_server function is the MIG generated server handling func-
tion to handle messages from the kernel corresponding to IPC notifications.
Such messages are delivered to the notification port named in a mach_msg or
mach_port_request_notification call. The seqnos_notify_server function per-
forms all necessary argument handling for this kernel message and calls the ap-
propriate handling function. These functions must be supplied by the caller.

PARAMETERS

in_msg
[pointer to in structure] The notification message received from the ker-
nel.

out_msg
[out structure] Not used.

NOTES
seqnos_notify_server differs from notify_server in that it supplies message se-
quence numbers to the server interfaces.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the notification mechanism and no other
action was taken.

Mach 3 Kernel Interfaces 297

seqnos_notify_server

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_seqnos_mach_notify_dead_name, do_seqnos_mach_notify_msg_accept-
ed, do_seqnos_mach_notify_no_senders, do_seqnos_mach_notify_port_de-
leted, do_seqnos_mach_notify_port_destroyed,
do_seqnos_mach_notify_send_once.

298 Mach 3 Kernel Interfaces

MIG Server Routines

Mach 3 Kernel Interfaces 299

APPENDIX B Multicomputer Support

Support for multicomputers is being added to the Mach kernel. This provides transparent
support for distributed, non-shared-memory environments. The current support does not
handle node failures and so is suitable to multicomputer environments but not yet to net-
worked workstation environments.

With this support, a single logical Mach kernel is formed that spans a set of computers.
The entire set acts as one Mach host. Each actual computer (possibly a multiprocessor)
in the set, referred to as a node, is referenced by an integer node number within the con-
taining “host”.

This appendix describes operations that apply to individual nodes in such a configuration.

300 Mach 3 Kernel Interfaces

Multicomputer Support

norma_get_special_port

Function — Returns a send right to a node specific port

LIBRARY
libmach_sa.a, libmach.a

#include <mach/norma_special_ports.h>

SYNOPSIS

kern_return_t norma_get_special_port
(mach_port_t host_priv,
int node,
int which_port,
mach_port_t* special_port);

DESCRIPTION
The norma_get_special_port function returns a send right for a special port be-
longing to node on host_priv.

Each node maintains a (small) set of node specific ports. The device master
port, host paging port, host name and host control port are maintained by the
kernel. The kernel also permits a small set of server specified node specific
ports; the name server port is an example and is given (by convention) an as-
signed special port index.

MACRO FORMS
norma_get_device_port

kern_return_t norma_get_device_port
(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node,
NORMA_DEVICE_PORT, special_port)

norma_get_host_paging_port
kern_return_t norma_get_host_paging_port

(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node,
NORMA_HOST_PAGING_PORT, special_port)

Mach 3 Kernel Interfaces 301

norma_get_special_port

norma_get_host_port
kern_return_t norma_get_host_port

(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node,
NORMA_HOST_PORT, special_port)

norma_get_host_priv_port
kern_return_t norma_get_host_priv_port

(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node,
NORMA_HOST_PRIV_PORT, special_port)

norma_get_nameserver_port
kern_return_t norma_get_nameserver_port

(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node,
NORMA_NAMESERVER_PORT, special_port)

PARAMETERS

host_priv
[in scalar] The control port for the host for which to return the special
port’s send right.

node
[in scalar] The index of the node for which the port is desired.

which_port
[in scalar] The index of the special port for which the send right is re-
quested. Valid values are:

NORMA_DEVICE_PORT
The device master port for the node.

NORMA_HOST_PAGING_PORT
The default pager port for the node.

NORMA_HOST_PORT
The host name port for the node. If the specified node is the
current node, this value (unless otherwise set) is the same as
would be returned by mach_host_self.

302 Mach 3 Kernel Interfaces

Multicomputer Support

NORMA_HOST_PRIV_PORT
The host control port for the node.

NORMA_NAMESERVER_PORT
The registered name server port for the node.

special_port
[out scalar] The returned value for the port.

RETURN VALUE

KERN_SUCCESS
The port was returned.

KERN_INVALID_ARGUMENT
host_priv is not a valid host, node is not a valid node or which_port is
not a valid port selector.

RELATED INFORMATION
Functions: mach_host_self, norma_set_special_port, vm_set_default_memo-
ry_manager.

Mach 3 Kernel Interfaces 303

norma_port_location_hint

norma_port_location_hint

Function — Guess a port’s current location

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

kern_return_t norma_port_location_hint
(mach_port_t task,
mach_port_t port,
int* node);

DESCRIPTION
The norma_port_location_hint function returns the best guess of port's current
location. The hint is guaranteed to be a node where the port once was; it is guar-
anteed to be accurate if port has never moved. This can be used to determine res-
idence node for hosts, tasks, threads, etc.

PARAMETERS

task
[in scalar] Task reference (not currently used)

port
[in scalar] Send right to the port to locate.

node
[out scalar] Port location hint

RETURN VALUE

KERN_SUCCESS
A hint was returned.

KERN_INVALID_ARGUMENT
port is not a valid port.

RELATED INFORMATION
Functions: task_set_child_node, norma_task_create.

304 Mach 3 Kernel Interfaces

Multicomputer Support

norma_set_special_port

Function — Sets a node specific special port

LIBRARY
libmach_sa.a, libmach.a

#include <mach/norma_special_ports.h>

SYNOPSIS

kern_return_t norma_set_special_port
(mach_port_t host_priv,
int node,
int which_port,
mach_port_t special_port);

DESCRIPTION
The norma_set_special_port function sets the special port belonging to node
on host_priv.

Each node maintains a (small) set of node specific ports. The device master
port, host paging port, host name and host control port are maintained by the
kernel. The kernel also permits a small set of server specified node specific
ports; the name server port is an example and is given (by convention) an as-
signed special port index.

MACRO FORMS
norma_set_device_port

kern_return_t norma_set_device_port
(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node,
NORMA_DEVICE_PORT, special_port)

norma_set_host_paging_port
kern_return_t norma_set_host_paging_port

(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node,
NORMA_HOST_PAGING_PORT, special_port)

Mach 3 Kernel Interfaces 305

norma_set_special_port

norma_set_host_port
kern_return_t norma_set_host_port

(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node,
NORMA_HOST_PORT, special_port)

norma_set_host_priv_port
kern_return_t norma_set_host_priv_port

(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node,
NORMA_HOST_PRIV_PORT, special_port)

norma_set_nameserver_port
kern_return_t norma_set_nameserver_port

(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node,
NORMA_NAMESERVER_PORT, special_port)

PARAMETERS

host_priv
[in scalar] The host for which to set the special port. Currently, this
must be the per-node host control port.

node
[in scalar] The index of the node for which the port is to be set.

which_port
[in scalar] The index of the special port to be set. Valid values are:

NORMA_DEVICE_PORT
The device master port for the node.

NORMA_HOST_PAGING_PORT
The default pager port for the node.

NORMA_HOST_PORT
The host name port for the node.

NORMA_HOST_PRIV_PORT
The host control port for the node.

306 Mach 3 Kernel Interfaces

Multicomputer Support

NORMA_NAMESERVER_PORT
The registered name server port for the node.

special_port
[in scalar] A send right to the new special port.

RETURN VALUE

KERN_SUCCESS
The port was set.

KERN_INVALID_ARGUMENT
host_priv is not a valid host, node is not a valid node or which_port is
not a valid port selector.

RELATED INFORMATION
Functions: mach_host_self, norma_get_special_port, vm_set_default_memo-
ry_manager.

Mach 3 Kernel Interfaces 307

norma_task_create

norma_task_create

Function — Create a task on a specified node

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

kern_return_t norma_task_create
(mach_port_t parent_task,
boolean_t inherit_memory,
int child_node,
mach_port_t* child_task);

DESCRIPTION
The norma_task_create function creates a new task from parent_task on the
specified node and returns the name of the new task in child_task. The child
task acquires shared or copied parts of the parent’s address space (see vm_in-
herit). The child task initially contains no threads. The new task inherits the PC
sampling status of its parent.

By way of comparison, tasks created by the standard task_create primitive are
created on the node last set by task_set_child_node (by default the parent_-
task’s node).

The child task receives the three following special ports, which are created or
copied for it at task creation:

• task_kernel_port — The port by which the kernel knows the new child
task. The child task holds a send right for this port. The port name is also re-
turned to the calling task.

• task_bootstrap_port — The port to which the child task can send a mes-
sage requesting return of any system service ports that it needs (for example,
a port to the Network Name Server or the Environment Manager). The child
task inherits a send right for this port from the parent task. The child task
can use task_get_special_port to change this port.

• task_exception_port — A default exception port for the child task, inherit-
ed from the parent task. The exception port is the port to which the kernel
sends exception messages. Exceptions are synchronous interruptions to the
normal flow of program control caused by the program itself. Some excep-
tions are handled transparently by the kernel, but others must be reported to
the program. The child task, or any one of its threads, can change the default

308 Mach 3 Kernel Interfaces

Multicomputer Support

exception port to take an active role in exception handling (see
task_get_special_port or thread_get_special_port).

PARAMETERS

parent_task
[in scalar] The task from which to draw the child task’s port rights, re-
source limits, and address space.

inherit_memory
[in scalar] Address space inheritance indicator. If true, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_node
[in scalar] The node index of the node on which to create the child.

child_task
[out scalar] The kernel-assigned name for the new task.

RETURN VALUE

KERN_SUCCESS
A new task has been created.

KERN_INVALID_ARGUMENT
parent_task is not a valid task port.

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

RELATED INFORMATION
Functions: task_set_child_node, task_create.

Mach 3 Kernel Interfaces 309

task_set_child_node

task_set_child_node

Function — Set the node upon which future child tasks will be created

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

kern_return_t task_set_child_node
(mach_port_t task,
int child_node);

DESCRIPTION
The task_set_child_node function specifies a node upon which child tasks will
be created. This call exists only to allow testing with unmodified servers. Server
developers should use norma_task_create instead.

PARAMETERS

task
[in scalar] The task who’s children are to be affected.

node
[in scalar] The index of the node upon which future children should be
created.

RETURN VALUE

KERN_SUCCESS
The node was set.

KERN_INVALID_ARGUMENT
task is not a valid task.

RELATED INFORMATION
Functions: norma_task_create.

310 Mach 3 Kernel Interfaces

Multicomputer Support

Mach 3 Kernel Interfaces 311

APPENDIX C Intel 386 Support

This appendix describes special kernel interfaces to support the special hardware features
of the Intel 386 processor and its successors.

Aside from the special functions listed here, the Intel 386 support also includes special
thread state “flavors” (See mach/thread_status.h.).

• i386_THREAD_STATE—Basic machine thread state, except for segment and float-
ing registers.

• i386_REGS_SEGS_STATE—Same as i386_THREAD_STATE but also sets/gets seg-
ment registers.

• i386_FLOAT_STATE—Floating point registers.

• i386_V86_ASSIST_STATE—Virtual 8086 interrupt table.

(The i386_ISA_PORT_MAP_STATE flavor shown in mach/thread_status.h has been
disabled.)

IO Permission Bitmap
The 386 supports direct IO instructions. Generally speaking, these instructions are privi-
leged (sensitive to IOPL). Mach, in combination with the processor, allows threads to di-
rectly execute these instructions against hardware IO ports for which the thread has
permission (those named in its IO permission bitmap). (Note that this is a per-thread
property.) The i386_io_port_add function enables IO to the port corresponding to the de-
vice port supplied to the call. i386_io_port_remove disables such IO; i386_io_port_list
lists the devices to which IO is permitted.

For the sake of supporting the DOS emulator, the kernel supports a special device iopl.
Access to this device implies access to the speaker, configuration CMOS, game port,

312 Mach 3 Kernel Interfaces

Intel 386 Support

sound blaster, printer and the VGA ports (device kd0 or vga). Attempting to execute an
IO instruction against one of these devices when the task holds send rights to the iopl de-
vice automatically adds these devices to the IO permission bitmap.

Virtual 8086 Support
Virtual 8086 mode is supported by Mach, enabled when the EFL_VM (virtual machine)
flag in the thread state→efl is set. The various instructions sensitive to IOPL are simulat-
ed by the Mach kernel. This includes simulating an interrupt enabled flag and associated
instructions.

A virtual 8086 task receives simulated 8086 interrupts by setting an interrupt descriptor
table (in task space). This table is set with the i386_V86_ASSIST_STATE status flavor.

[1] struct i386_v86_assist_state
[2] {
[3] unsigned int int_table;
[4] int int_count;
[5] };
[6] #define i386_V86_ASSIST_STATE_COUNT

(sizeof (struct i386_v86_assist_state)/sizeof(unsigned int))

The int_table field points to an interrupt table in task space. The table has int_count en-
tries. Each entry of this table has the format shown below.

[1] struct v86_interrupt_table
[2] {
[3] unsigned int count;
[4] unsigned short mask;
[5] unsigned short vec;
[6] };

When the 8086 task has an associated interrupt table and its simulated interrupt enable
flag is set, the kernel will scan the table looking for an entry whose count is greater than
zero and whose mask value is not set. If found, the count will be decremented and the
task will take a simulated 8086 interrupt to the address given by vec. No other simulated
interrupts will be generated until the 8086 task executes an iret instruction and the (simu-
lated) interrupt enable flag is again set. The generation of the simulated interrupt will
turn off the hardware’s trace trap flag; executing the iret instruction will restore the trace
trap flag.

Local Descriptor Table
Although the 386 (and successors) view the address space as segmented, Mach provides
each task with a linear address space (32 bits for the Intel family). The various entries in
the system global descriptor table (GDT) are used for system use; in general the entries
map all of kernel memory. The thread’s local descriptor table (LDT) maps its task space.
Segment 2 of this table is used for task code accesses (it permits only read access); seg-
ment 3 is used for data accesses (it permits write access, subject to page level protec-
tions); both segments, though, map all of the task’s address space. Segment 1 of the table
is unused. Segment 0 is used as a call gate for system calls (traps).

Mach 3 Kernel Interfaces 313

Each thread may set entries in its LDT to describe various ranges of its underlying ad-
dress space. There is no way that this mechanism permits a thread to access any more vir-
tual memory than its address space permits; these LDT segment entries merely provide
different views of the address space. A segment may be thought of as an automatically re-
located portion of the address space; the beginning of a segment can be referenced as ad-
dress zero given the appropriately set 386 segment register. These local segment
descriptors are manipulated with the i386_set_ldt function and examined with the
i386_get_ldt function.

314 Mach 3 Kernel Interfaces

Intel 386 Support

i386_get_ldt

Function — Return per-thread segment descriptors

LIBRARY
libmach_sa.a, libmach.a

#include <mach/i386/mach_i386.h>

SYNOPSIS
[1] struct descriptor
[2] {
[3] unsigned int low_word;
[4] unsigned int high_word;
[5] };
[6] typedef struct descriptor descriptor_t;
[7] typedef struct descriptor* descriptor_list_t;

kern_return_t i386_get_ldt
(mach_port_t thread,
int first_selector,
int desired_count,
descriptor_list_t* desc_list,
mach_msg_type_number_t* returned_count);

DESCRIPTION
The i386_get_ldt function returns per-thread segment descriptors from the
thread’s local descriptor table (LDT).

PARAMETERS

thread
[in scalar] Thread whose segment descriptors are to be returned

first_selector
[in scalar] Selector value (segment register value) corresponding to the
first segment whose descriptor is to be returned

desired_count
[in scalar] Number of returned descriptors desired

desc_list
[unbounded out in-line array of descriptor_t] Array of segment descrip-
tors. The reserved size of this array is supplied as the input value for re-
turned_count.

Mach 3 Kernel Interfaces 315

i386_get_ldt

returned_count
[pointer to in/out scalar] On input, the reserved size of the descriptor ar-
ray; on output, the number of descriptors returned

RETURN VALUE

KERN_SUCCESS
Descriptors returned

KERN_INVALID_ARGUMENT
Invalid thread or selector value out of range.

RELATED INFORMATION
Functions: i386_set_ldt.

316 Mach 3 Kernel Interfaces

Intel 386 Support

i386_io_port_add

Function — Permit IO instructions to be performed against a device

LIBRARY
libmach_sa.a, libmach.a

#include <mach/i386/mach_i386.h>

SYNOPSIS

kern_return_t i386_io_port_add
(mach_port_t thread,
mach_port_t device);

DESCRIPTION
The i386_io_port_add function adds a device to the IO permission bitmap for a
thread, thereby permitting the thread to execute IO instructions against the de-
vice.

PARAMETERS

thread
[in scalar] Thread whose permission bitmap is to be set.

device
[in scalar] The device to which IO instructions are to be permitted.

NOTES
Normally, the thread must have called i386_io_port_add for all devices to
which it will execute IO instructions. However, possessing send rights to the
iopl device port will cause the iopl device to be automatically added to the
thread’s IO map upon first attempted access. This is a backward compatibility
feature for the DOS emulator.

RETURN VALUE

KERN_SUCCESS
The device was added to the IO permission bitmap.

KERN_INVALID_ARGUMENT
thread or device were not valid.

Mach 3 Kernel Interfaces 317

i386_io_port_add

RELATED INFORMATION
Functions: i386_io_port_list, i386_io_port_remove.

318 Mach 3 Kernel Interfaces

Intel 386 Support

i386_io_port_list

Function — List devices permitting IO

LIBRARY
libmach_sa.a, libmach.a

#include <mach/i386/mach_i386.h>

SYNOPSIS

kern_return_t i386_io_port_list
(mach_port_t thread,
device_list_t* list,
mach_msg_type_number_t* count);

DESCRIPTION
The i386_io_port_list function returns a list of the devices named in the
thread’s IO permission bitmap, namely those permitting IO instructions to be ex-
ecuted against them.

PARAMETERS

thread
[in scalar] Thread whose permission list is to be returned

list
[out pointer to dynamic array of device_t] Device ports permitting IO

count
[out scalar] Number of ports returned

RETURN VALUE

KERN_SUCCESS
List returned

KERN_INVALID_ARGUMENT
thread is invalid

KERN_RESOURCE_SHORTAGE
Insufficient kernel memory to return list

Mach 3 Kernel Interfaces 319

i386_io_port_list

RELATED INFORMATION
Functions: i386_io_port_add, i386_io_port_remove.

320 Mach 3 Kernel Interfaces

Intel 386 Support

i386_io_port_remove

Function — Disable IO instructions against a device

LIBRARY
libmach_sa.a, libmach.a

#include <mach/i386/mach_i386.h>

SYNOPSIS

kern_return_t i386_io_port_remove
(mach_port_t thread,
mach_port_t device);

DESCRIPTION
The i386_io_port_remove function removes the specified device from the
thread’s IO permission bitmap, thereby prohibiting IO instructions being execut-
ed against the device.

PARAMETERS

thread
[in scalar] Thread whose permission bitmap is to be cleared

device
[in scalar] Device whose permission is to be revoked

RETURN VALUE

KERN_SUCCESS
Permission removed

KERN_INVALID_ARGUMENT
device or thread was invalid

RELATED INFORMATION
Functions: i386_io_port_add, i386_io_port_list.

Mach 3 Kernel Interfaces 321

i386_set_ldt

i386_set_ldt

Function — Set per-thread segment descriptors

LIBRARY
libmach_sa.a, libmach.a

#include <mach/i386/mach_i386.h>

SYNOPSIS
[1] struct descriptor
[2] {
[3] unsigned int low_word;
[4] unsigned int high_word;
[5] };
[6] typedef struct descriptor descriptor_t;
[7] typedef struct descriptor* descriptor_list_t;

kern_return_t i386_set_ldt
(mach_port_t thread,
int first_selector,
descriptor_list_t desc_list,
mach_msg_type_number_t count);

DESCRIPTION
The i386_set_ldt function allows a thread to have a private local descriptor ta-
ble (LDT) which allows its local segments to map various ranges of its address
space.

PARAMETERS

thread
[in scalar] Thread whose segment descriptors are to be set

first_selector
[in scalar] Selector value (segment register value) corresponding to the
first segment whose descriptor is to be set

desc_list
[pointer to in array of descriptor_t] Array of segment descriptors. The
following forms are permitted:

• Empty descriptor. The ACC_P flag (segment present) may or may
not be set.

• ACC_CALL_GATE — Converted into a system call gate. The
ACC_P flag must be set.

322 Mach 3 Kernel Interfaces

Intel 386 Support

All other descriptors must have both the ACC_P flag set and specify
user mode access (ACC_PL_U).

• ACC_DATA

• ACC_DATA_W

• ACC_DATA_E

• ACC_DATA_EW

• ACC_CODE

• ACC_CODE_R

• ACC_CODE_C

• ACC_CODE_CR

• ACC_CALL_GATE_16

• ACC_CALL_GATE

count
[in scalar] Number of descriptors to be set

RETURN VALUE

KERN_SUCCESS
Descriptors set

KERN_INVALID_ARGUMENT
thread is invalid, the selector values are out of range or a segment de-
scriptor is invalid

RELATED INFORMATION
Functions: i386_get_ldt.

Mach 3 Kernel Interfaces 323

APPENDIX D Data Structures

This appendix discusses the specifics of the various structures used as a part of the ker-
nel’s various interfaces. This appendix does not discuss all of the various data types used
by the kernel’s interfaces, only the fields of the various structures used.

324 Mach 3 Kernel Interfaces

Data Structures

host_basic_info

Structure — Defines basic information about a host

SYNOPSIS
[1] struct host_basic_info
[2] {
[3] int max_cpus;
[4] int avail_cpus;
[5] vm_size_t memory_size;
[6] cpu_type_t cpu_type;
[7] cpu_subtype_t cpu_subtype;
[8] };
[9] typedef struct host_basic_info host_basic_info_data_t;

[10] typedef struct host_basic_info* host_basic_info_t;

DESCRIPTION
The host_basic_info structure defines the basic information available about a
host.

FIELDS

max_cpus
Maximum possible CPUs for which kernel is configured

avail_cpus
Number of CPUs now available

memory_size
Size of memory, in bytes

cpu_type
CPU type

cpu_subtype
CPU sub-type

RELATED INFORMATION
Functions: host_info.

Data structures: host_load_info, host_sched_info.

Mach 3 Kernel Interfaces 325

host_load_info

host_load_info

Structure — Defines load information about a host

SYNOPSIS
[1] #define CPU_STATE_USER 0
[2] #define CPU_STATE_SYSTEM 1
[3] #define CPU_STATE_IDLE 2
[4] struct host_load_info
[5] {
[6] long avenrun[3];
[7] long mach_factor[3];
[8] };
[9] typedef struct host_load_info host_load_info_data_t;

[10] typedef struct host_load_info* host_load_info_t;

DESCRIPTION
The host_load_info structure defines the loading information available about a
host. The information returned is exponential averages over three periods of
time: 5, 30 and 60 seconds.

FIELDS

avenrun
load average—average number of runnable processes divided by num-
ber of CPUs

mach_factor
The processing resources available to a new thread—the number of
CPUs divided by (1 + the number of threads)

RELATED INFORMATION
Functions: host_info.

Data structures: host_basic_info, host_sched_info.

326 Mach 3 Kernel Interfaces

Data Structures

host_sched_info

Structure — Defines scheduling information about a host

SYNOPSIS
[1] struct host_sched_info
[2] {
[3] int min_timeout;
[4] int min_quantum;
[5] };
[6] typedef struct host_sched_info host_sched_info_data_t;
[7] typedef struct host_sched_info* host_sched_info_t;

DESCRIPTION
The host_sched_info structure defines the scheduling information available
about a host.

FIELDS

min_timeout
Minimum time-out, in milliseconds

min_quantum
Minimum quantum, in milliseconds

RELATED INFORMATION
Functions: host_info.

Data structures: host_basic_info, host_load_info.

Mach 3 Kernel Interfaces 327

mach_msg_header

mach_msg_header

Structure — Defines the header portion for messages

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_bits_t msgh_bits;
[4] mach_msg_size_t msgh_size;
[5] mach_port_t msgh_remote_port;
[6] mach_port_t msgh_local_port;
[7] mach_port_seqno_t msgh_seqno;
[8] mach_msg_id_t msgh_id;
[9] } mach_msg_header_t;

DESCRIPTION
A Mach message consists of a fixed size message header, a mach_msg_head-
er_t, followed by zero or more data items. Data items are typed. Each item has
a type descriptor followed by the actual data (or an address of the data, for out-
of-line memory regions).

There are two forms of type descriptors, a mach_msg_type_t and a mach_ms-
g_type_long_t. The mach_msg_type_long_t type descriptor allows larger val-
ues for these fields. The msgtl_header field in the long descriptor is only used
for its in-line, long-form, and de-allocate bits.

FIELDS

msgh_bits
This field specifies the following properties of the message:

MACH_MSGH_BITS_REMOTE_MASK
Encodes mach_msg_type_name_t values that specify the
port rights in the msgh_remote_port field. The value must
specify a send or send-once right for the destination of the
message.

MACH_MSGH_BITS_LOCAL_MASK
Encodes mach_msg_type_name_t values that specify the
port rights in the msgh_local_port field. If the value doesn’t
specify a send or send-once right for the message’s reply port,
it must be zero and msgh_local_port must be MACH_PORT_-
NULL.

328 Mach 3 Kernel Interfaces

Data Structures

MACH_MSGH_BITS_COMPLEX
The complex bit must be specified if the message body con-
tains port rights or out-of-line memory regions. If it is not
specified, then the message body carries no port rights or
memory, no matter what the type descriptors may seem to in-
dicate.

 MACH_MSGH_BITS_REMOTE(bits)
This macro returns the appropriate mach_msg_type_name_t
values, given a msgh_bits value.

MACH_MSGH_BITS_LOCAL(bits)
This macro returns the appropriate mach_msg_type_name_t
values, given a msgh_bits value.

MACH_MSGH_BITS (remote, local)
This macro constructs a value for msgh_bits, given two
mach_msg_type_name_t values.

msgh_size
In the header of a received message, this field contains the message's
size. The message size, a byte quantity, includes the message header,
type descriptors, and in-line data. For out-of-line memory regions, the
message size includes the size of the in-line address, not the size of the
actual data region. There are no arbitrary limits on the size of a Mach
message, the number of data items in a message, or the size of the data
items.

msgh_remote_port
When sending, specifies the destination port of the message. The field
must carry a legitimate send or send-once right for a port. When re-
ceived, this field is swapped with msgh_local_port.

msgh_local_port
When sending, specifies an auxiliary port right, which is conventional-
ly used as a reply port by the recipient of the message. The field must
carry a send right, a send-once right, MACH_PORT_NULL, or
MACH_PORT_DEAD. When received, this field is swapped with ms-
gh_remote_port.

msgh_seqno
The sequence number of this message relative to the port from which it
is received. This field is ignored on sent messages.

msgh_id
Not set or read by the mach_msg call. The conventional meanings is
to convey an operation or function id.

Mach 3 Kernel Interfaces 329

mach_msg_header

NOTES
Simple messages are provided to handle in-line data. The sender copies the in-
line data into the message structure, and the receiver usually copies it out.

Non-simple messages are provided to handle out-of-line data. Out-of-line data
allows for the sending of port information or data blocks that are very large or
of variable size. The kernel maps out-of-line data from the address space of the
sender to the address space of the receiver. The kernel copies the data only if the
sender or receiver subsequently modifies it. This is an example of copy-on-write
data sharing.

RELATED INFORMATION
Functions: mach_msg, mach_msg_receive, mach_msg_send.

Data Structures: mach_msg_type, mach_msg_type_long.

330 Mach 3 Kernel Interfaces

Data Structures

mach_msg_type

Structure — Defines the data descriptor for long data items in messages

SYNOPSIS
[1] typedef struct
[2] {
[3] unsigned int msgt_name: 8,
[4] msgt_size: 8,
[5] msgt_number: 12,
[6] msgt_inline: 1,
[7] msgt_longform: 1,
[8] msgt_deallocate: 1,
[9] msgt_unused: 1;

[10] } mach_msg_type_t;

DESCRIPTION
Each data item in a MACH IPC message has a type descriptor, a mach_msg_ty-
pe_t or a mach_msg_type_long_t. The mach_msg_type_long_t type descrip-
tor allows larger values for these fields.

FIELDS

msgt_name
Specifies the data's type. The following types are predefined:

MACH_MSG_TYPE_UNSTRUCTURED
un-interpreted data (32 bits)

MACH_MSG_TYPE_BIT
single bit

MACH_MSG_TYPE_BOOLEAN
boolean value (32 bits)

MACH_MSG_TYPE_INTEGER_16
16 bit integer

MACH_MSG_TYPE_INTEGER_32
32 bit integer

MACH_MSG_TYPE_CHAR
single character

MACH_MSG_TYPE_BYTE
8-bit byte

Mach 3 Kernel Interfaces 331

mach_msg_type

MACH_MSG_TYPE_INTEGER_8
8-bit integer

MACH_MSG_TYPE_REAL
floating value (32 bits)

MACH_MSG_TYPE_STRING
null terminated

MACH_MSG_TYPE_STRING_C
null terminated

MACH_MSG_TYPE_PORT_NAME
type of mach_port_t. This is the type of the name for a port,
not the type to specify if a port right is to be specified.

MACH_MSG_TYPE_MOVE_RECEIVE
move the name receive right

MACH_MSG_TYPE_MOVE_SEND
move the named send right

MACH_MSG_TYPE_MOVE_SEND_ONCE
move the named send-once right

MACH_MSG_TYPE_COPY_SEND
make a copy of the named send right

MACH_MSG_TYPE_MAKE_SEND
make a send right from the named receive right

MACH_MSG_TYPE_MAKE_SEND_ONCE
make a send-once right from the named send or receive right

The last six types specify port rights, and receive special treatment.
The type MACH_MSG_TYPE_PORT_NAME describes port right
names, when no rights are being transferred, but just names. For this
purpose, it should be used in preference to MACH_MSG_TYPE_IN-
TEGER_32.

msgt_size
Specifies the size of each datum, in bits. For example, the msgt_size of
MACH_MSG_TYPE_INTEGER_32 data is 32.

msgt_number
Specifies how many data elements comprise the data item. Zero is a le-
gitimate number. The total length specified by a type descriptor is (ms-
gt_size * msgt_number), rounded up to an integral number of bytes. In-
line data is then padded to an integral number of long-words. This en-

332 Mach 3 Kernel Interfaces

Data Structures

sures that type descriptors always start on long-word boundaries. It im-
plies that message sizes are always an integral multiple of a long-
word’s size.

msgt_inline
When FALSE, specifies that the data actually resides in an out-of-line
region. The address of the data region follows the type descriptor in the
message body. The msgt_name, msgt_size, and msgt_number fields de-
scribe the data region, not the address.

msgt_longform
Specifies, when TRUE, that this type descriptor is a mach_msg_-
type_long_t instead of a mach_msg_type_t.

msgt_deallocate
Used with out-of-line regions. When TRUE, it specifies the data region
should be de-allocated from the sender’s address space (as if with vm_-
deallocate) when the message is sent.

msgt_unused
Not used, should be zero.

RELATED INFORMATION
Functions: mach_msg, mach_msg_receive, mach_msg_send.

Data Structures: mach_msg_header, mach_msg_type_long.

Mach 3 Kernel Interfaces 333

mach_msg_type_long

mach_msg_type_long

Structure — Defines the data descriptor for long data items in messages

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_type_t msgtl_header;
[4] unsigned short msgtl_name;
[5] unsigned short msgtl_size;
[6] unsigned int msgtl_number;
[7] } mach_msg_type_long_t;

DESCRIPTION
Each data item has a type descriptor, a mach_msg_type_t or a mach_msg_-
type_long_t. The mach_msg_type_long_t type descriptor allows larger values
for these fields. The msgtl_header field in the long descriptor is only used for its
in-line, long-form, and de-allocate bits.

FIELDS

msgtl_header
A header in common with mach_msg_type_t. When the msgt_long-
form bit in the header is TRUE, this type descriptor is a mach_msg_-
type_long_t instead of a mach_msg_type_t. The msgt_name,
msgt_size, and msgt_number fields should be zero. Instead, mach_msg
uses the following: msgtl_name, msgtl_size, and msgtl_number fields.

msgtl_name
Specifies the data's type. The defined values are the same as those for
mach_msg_type.

msgtl_size
Specifies the size of each datum, in bits. For example, the msgtl_size of
MACH_MSG_TYPE_INTEGER_32 data is 32.

msgtl_number
Specifies how many data elements comprise the data item. Zero is a le-
gitimate number. The total length specified by a type descriptor is (ms-
gtl_size * msgtl_number), rounded up to an integral number of bytes.
In-line data is then padded to an integral number of long-words. This
ensures that type descriptors always start on long-word boundaries. It
implies that message sizes are always an integral multiple of a long-
word’s size.

334 Mach 3 Kernel Interfaces

Data Structures

RELATED INFORMATION
Functions: mach_msg, mach_msg_receive, mach_msg_send.

Data Structures: mach_msg_header, mach_msg_type.

Mach 3 Kernel Interfaces 335

mach_port_status

mach_port_status

Structure — Defines information for a port

SYNOPSIS
[1] struct mach_port_status
[2] {
[3] mach_port_t mps_pset;
[4] mach_port_seqno_t mps_seqno;
[5] mach_port_mscount_t mps_mscount;
[6] mach_port_msgcount_t mps_qlimit;
[7] mach_port_msgcount_t mps_msgcount;
[8] mach_port_rights_t mps_sorights;
[9] boolean_t mps_srights;

[10] boolean_t mps_pdrequest;
[11] boolean_t mps_nsrequest;
[12] };
[13] typedef struct mach_port_status mach_port_status_t;

DESCRIPTION
The mach_port_status structure defines information about a port.

FIELDS

mps_pset
Containing port set

mps_seqno
Current sequence number for the port.

mps_mscount
Make-send count

mps_qlimit
Queue limit

mps_msgcount
Number in the queue

mps_sorights
How many send-once rights

mps_srights
True if send rights exist

336 Mach 3 Kernel Interfaces

Data Structures

mps_pdrequest
True if there is a port-deleted requested

mps_nsrequest
True if no-senders requested

RELATED INFORMATION
Functions: mach_port_get_receive_status.

Mach 3 Kernel Interfaces 337

mapped_time_value

mapped_time_value

Structure — Defines format of kernel maintained time in the mapped clock de-
vice

SYNOPSIS
[1] struct mapped_time_value
[2] {
[3] long seconds;
[4] long microseconds;
[5] long check_seconds;
[6] };
[7] typedef struct mapped_time_value mapped_time_value_t;

DESCRIPTION
The mapped_time_value structure defines the format of the current-time struc-
ture maintained by the kernel and visible by mapping (device_map) the “time”
pseudo-device. The data in this structure is updated at every clock interrupt. It
contains the same value that would be returned by host_get_time.

FIELDS

seconds
Seconds since system initialization

microseconds
Microseconds in the current second

check_seconds
A field used to synchronize with the kernel’s setting of the time.

NOTES
Because of the race between the referencing of these multiple fields and the ker-
nel’s setting them, they should be referenced as follows:

[1] do
[2] {
[3] secs = mtime → seconds;
[4] usecs = mtime → microseconds;
[5] } while (secs!= mtime → check_seconds);

RELATED INFORMATION
Functions: device_map, host_adjust_time, host_get_time, host_set_time.

338 Mach 3 Kernel Interfaces

Data Structures

processor_basic_info

Structure — Defines the basic information about a processor.

SYNOPSIS
[1] struct processor_basic_info
[2] {
[3] cpu_type_t cpu_type;
[4] cpu_subtype_t cpu_subtype;
[5] boolean_t running;
[6] int slot_num;
[7] boolean_t is_master;
[8] };
[9] typedef struct processor_basic_info* processor_basic_info_t;

DESCRIPTION
The processor_basic_info structure defines the information available about a
processor slot.

FIELDS

cpu_type
Type of CPU

cpu_subtype
Sub-type of CPU

running
True if the CPU is running

slot_num
Slot number of the CPU

is_master
True if this is the master processor

RELATED INFORMATION
Functions: processor_info.

Mach 3 Kernel Interfaces 339

processor_set_basic_info

processor_set_basic_info

Structure — Defines the basic information about a processor set.

SYNOPSIS
[1] struct processor_set_basic_info
[2] {
[3] int processor_count;
[4] int task_count;
[5] int thread_count;
[6] int load_average;
[7] int mach_factor;
[8] };
[9] typedef struct processor_set_basic_info*processor_set_basic_info_t;

DESCRIPTION
The processor_set_basic_info structure defines the basic information available
about a processor set.

FIELDS

processor_count
Number of processors in this set

task_count
Number of tasks currently assigned to this processor set

thread_count
Number of threads currently assigned to this processor set

load_average
Scaled

mach_factor
Scaled

RELATED INFORMATION
Functions: processor_set_info.

Data Structures: processor_set_sched_info.

340 Mach 3 Kernel Interfaces

Data Structures

processor_set_sched_info

Structure — Defines the scheduling information about a processor set.

SYNOPSIS
[1] struct processor_set_sched_info
[2] {
[3] int policies;
[4] int max_priority;
[5] };
[6] typedef struct processor_set_sched_info*processor_set_sched_info_t;

DESCRIPTION
The processor_set_sched_info structure defines the global scheduling informa-
tion available about a processor set.

FIELDS

policies
Allowed policies

max_priority
Maximum scheduling priority for new threads

RELATED INFORMATION
Functions: processor_set_info.

Data Structures: processor_set_basic_info.

Mach 3 Kernel Interfaces 341

task_basic_info

task_basic_info

Structure — Defines basic information for tasks

SYNOPSIS
[1] struct task_basic_info
[2] {
[3] int suspend_count;
[4] int base_priority;
[5] vm_size_t virtual_size;
[6] vm_size_t resident_size;
[7] time_value_t user_time;
[8] time_value_t system_time;
[9] };

[10] typedef struct task_basic_info* task_basic_info_t;

DESCRIPTION
The task_basic_info structure defines the basic information array for tasks. The
task_info function returns this array for a specified task.

FIELDS

suspend_count
The current suspend count for the task.

base_priority
The base scheduling priority for the task.

virtual_size
The number of virtual pages for the task.

resident_size
The number of resident pages for the task

user_time
The total user run time for terminated threads within the task.

system_time
The total system run time for terminated threads within the task.

RELATED INFORMATION
Functions: task_info.

Data Structures: task_thread_times_info.

342 Mach 3 Kernel Interfaces

Data Structures

task_thread_times_info

Structure — Defines thread execution times information for tasks

SYNOPSIS
[1] struct task_thread_times_info
[2] {
[3] time_value_t user_time;
[4] time_value_t system_time;
[5] };
[6] typedef struct task_thread_times_info* task_thread_times_info_t;

DESCRIPTION
The task_thread_times_info structure defines thread execution time statistics
for tasks. The task_info function returns these times for a specified task. The
thread_info function returns this information for a specific thread.

FIELDS

user_time
Total user run time for live threads.

system_time
Total system run time for live threads.

RELATED INFORMATION
Functions: task_info.

Data Structures: task_basic_info, thread_info.

Mach 3 Kernel Interfaces 343

thread_basic_info

thread_basic_info

Structure — Defines basic information for threads

SYNOPSIS
[1] struct thread_basic_info
[2] {
[3] time_value_t user_time;
[4] time_value_t system_time;
[5] int cpu_usage;
[6] int base_priority;
[7] int cur_priority;
[8] int run_state;
[9] int flags;

[10] int suspend_count;
[11] long sleep_time;
[12] };
[13] typedef struct thread_basic_info* thread_basic_info_t;

DESCRIPTION
The thread_basic_info structure defines the basic information array for threads.
The thread_info function returns this array for a specified thread.

FIELDS

user_time
The total user run time for the thread.

system_time
The total system run time for the thread.

cpu_usage
Scaled CPU usage percentage for the thread.

base_priority
The base scheduling priority for the thread.

cur_priority
The current scheduling priority for the thread.

run_state
The thread’s run state. Possible values are:

TH_STATE_RUNNING
The thread is running normally.

344 Mach 3 Kernel Interfaces

Data Structures

TH_STATE_STOPPED
The thread is stopped.

TH_STATE_WAITING
The thread is waiting normally.

TH_STATE_UNINTERRUPTIBLE
The thread is in an un-interruptible wait state.

TH_STATE_HALTED
The thread is halted at a clean point.

flags
Swap/idle flags for the thread. Possible values are:

TH_FLAGS_SWAPPED
The thread is swapped out.

TH_FLAGS_IDLE
The thread is an idle thread.

suspend_count
The current suspend count for the thread.

sleep_time
The number of seconds that the thread has been sleeping.

RELATED INFORMATION
Functions: thread_info.

Data Structures: thread_sched_info.

Mach 3 Kernel Interfaces 345

thread_sched_info

thread_sched_info

Structure — Defines scheduling information for threads

SYNOPSIS
[1] struct thread_sched_info
[2] {
[3] int policy;
[4] int data;
[5] int base_priority;
[6] int max_priority;
[7] int cur_priority;
[8] boolean_t depressed;
[9] int depress_priority;

[10] };
[11] typedef struct thread_sched_info* thread_sched_info_t;

DESCRIPTION
The thread_sched_info structure defines the scheduling information array for
threads. The thread_info function returns this array for a specified thread.

FIELDS

policy
Scheduling policy in effect

data
Associated data for the scheduling policy

base_priority
Base scheduling priority

max_priority
Maximum scheduling priority

cur_priority
Current scheduling priority

depressed
True if scheduling priority is depressed

depress_priority
Scheduling priority from which depressed

346 Mach 3 Kernel Interfaces

Data Structures

RELATED INFORMATION
Functions: thread_info.

Data Structures: thread_basic_info.

Mach 3 Kernel Interfaces 347

time_value

time_value

Structure — Defines format of system time values

SYNOPSIS
[1] struct time_value
[2] {
[3] long seconds;
[4] long microseconds;
[5] };
[6] typedef struct time_value time_value_t;

DESCRIPTION
The time_value structure defines the format of the time structure supplied to or
returned from the kernel.

FIELDS

seconds
Seconds since system initialization

microseconds
Microseconds in the current second

RELATED INFORMATION
Functions: host_adjust_time, host_get_time, host_set_time.

348 Mach 3 Kernel Interfaces

Data Structures

vm_statistics

Structure — Defines statistics for the kernel’s use of virtual memory

SYNOPSIS
[1] struct vm_statistics
[2] {
[3] long pagesize;
[4] long free_count;
[5] long active_count;
[6] long inactive_count;
[7] long wire_count;
[8] long zero_fill_count;
[9] long reactivations;

[10] long pageins;
[11] long pageouts;
[12] long faults;
[13] long cow_faults;
[14] long lookups;
[15] long hits;
[16] };
[17] typedef struct vm_statistics* vm_statistics_t;

DESCRIPTION
The vm_statistics structure defines the statistics available on the kernel’s use of
virtual memory. The statistics record virtual memory usage since the kernel was
booted.

You can also find pagesize by using the global variable vm_page_size. This vari-
able is set at task initialization and remains constant for the life of the task.

For related information for a specific task, see the task_basic_info structure.

FIELDS

pagesize
The virtual page size, in bytes.

free_count
The total number of free pages in the system.

active_count
The total number of pages currently in use and pageable.

inactive_count
The number of inactive pages.

Mach 3 Kernel Interfaces 349

vm_statistics

wire_count
The number of pages that are wired in memory and cannot be paged
out.

zero_fill_count
The number of zero-fill pages.

reactivations
The number of reactivated pages.

pageins
The number of requests for pages from a pager (such as the i-node pag-
er).

pageouts
The number of pages that have been paged out.

faults
The number of times the vm_fault routine has been called.

cow_faults
The number of copy-on-write faults.

lookups
The number of object cache lookups.

hits
The number of object cache hits.

RELATED INFORMATION
Functions: task_info, vm_statistics.

Data Structures: task_basic_info.

350 Mach 3 Kernel Interfaces

Data Structures

Mach 3 Kernel Interfaces 351

APPENDIX E Error Return Values

This appendix lists the various kernel return values.

An error code has the following format:

• system code (6 bits). The err_get_system (err) macro extracts this field.

• subsystem code (12 bits). The err_get_sub (err) macro extracts this field.

• error code (14 bits). The err_get_code (err) macro extracts this field.

The various system codes are:

• err_kern —kernel

• err_us — user space library

• err_server— user space servers

• err_mach_ipc — Mach-IPC errors

• err_local — user defined errors

A typical user error code definition would be:

#define SOMETHING_WRONG err_local | err_sub (13) | 1

D_ALREADY_OPEN
Exclusive-use device already open

D_DEVICE_DOWN
Device has been shut down

352 Mach 3 Kernel Interfaces

Error Return Values

D_INVALID_OPERATION
Bad operation for device

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid IO size

D_IO_ERROR
Hardware IO error

D_IO_QUEUED
IO queued - do not return result

D_NO_MEMORY
Memory allocation failure

D_NO_SUCH_DEVICE
No such device

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

D_SUCCESS
Normal device return

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

EML_BAD_CNT
Invalid syscall number

Mach 3 Kernel Interfaces 353

EML_BAD_TASK
Null task

KERN_ABORTED
The operation was aborted. IPC code will catch this and reflect it as a message
error.

KERN_FAILURE
The function could not be performed; a catch-all.

KERN_INVALID_ADDRESS
Specified address is not currently valid.

KERN_INVALID_ARGUMENT
The function requested was not applicable to this type of argument, or an argu-
ment

KERN_INVALID_CAPABILITY
The supplied (port) capability is improper.

KERN_INVALID_HOST
Target host isn’t actually a host.

KERN_INVALID_NAME
The name doesn’t denote a right in the task.

KERN_INVALID_RIGHT
The name denotes a right, but not an appropriate right.

KERN_INVALID_TASK
Target task isn’t an active task.

KERN_INVALID_VALUE
A blatant range error.

354 Mach 3 Kernel Interfaces

Error Return Values

KERN_MEMORY_ERROR
During a page fault, the memory object indicated that the data could not be re-
turned. This failure may be temporary; future attempts to access this same data
may succeed, as defined by the memory object.

KERN_MEMORY_FAILURE
During a page fault, the target address refers to a memory object that has been
destroyed. This failure is permanent.

KERN_NAME_EXISTS
The name already denotes a right in the task.

KERN_NO_ACCESS
Bogus access restriction.

KERN_NO_SPACE
The address range specified is already in use, or no address range of the size
specified could be found.

KERN_NOT_IN_SET
The receive right is not a member of a port set.

KERN_NOT_RECEIVER
The task in question does not hold receive rights for the port argument.

KERN_PROTECTION_FAILURE
Specified memory is valid, but does not permit the required forms of access.

KERN_RESOURCE_SHORTAGE
A system resource could not be allocated to fulfill this request. This failure may
not be permanent.

KERN_RIGHT_EXISTS
The task already has send or receive rights for the port under another name.

KERN_SUCCESS
Successful completion

Mach 3 Kernel Interfaces 355

KERN_UREFS_OVERFLOW
Operation would overflow limit on user-references.

MACH_MSG_IPC_KERNEL
(mask bit) Kernel resource shortage handling an IPC capability.

MACH_MSG_IPC_SPACE
(mask bit) No room in IPC name space for another capability name.

MACH_MSG_SUCCESS
Normal IPC success.

MACH_MSG_VM_KERNEL
(mask bit) Kernel resource shortage handling out-of-line memory.

MACH_MSG_VM_SPACE
(mask bit) No room in VM address space for out-of-line memory.

MACH_RCV_BODY_ERROR
Error receiving message body. See special bits.

MACH_RCV_HEADER_ERROR
Error receiving message header. See special bits.

MACH_RCV_IN_SET
Port is a member of a port set.

MACH_RCV_INTERRUPTED
Software interrupt.

MACH_RCV_INVALID_DATA
Bogus message buffer for in-line data.

MACH_RCV_INVALID_NAME
Bogus name for receive port/port-set.

356 Mach 3 Kernel Interfaces

Error Return Values

MACH_RCV_INVALID_NOTIFY
Bogus notify port argument.

MACH_RCV_PORT_CHANGED
Port moved into a set during the receive.

MACH_RCV_PORT_DIED
Port/set was sent away/died during receive.

MACH_RCV_TIMED_OUT
Didn’t get a message within the time-out value.

MACH_RCV_TOO_LARGE
Message buffer is not large enough for in-line data.

MACH_SEND_INTERRUPTED
Software interrupt.

MACH_SEND_INVALID_DATA
Bogus in-line data.

MACH_SEND_INVALID_DEST
Bogus destination port.

MACH_SEND_INVALID_HEADER
A field in the header had a bad value.

MACH_SEND_INVALID_MEMORY
Invalid out-of-line memory address.

MACH_SEND_INVALID_NOTIFY
Bogus notify port argument.

MACH_SEND_INVALID_REPLY
Bogus reply port.

Mach 3 Kernel Interfaces 357

MACH_SEND_INVALID_RIGHT
Bogus port rights in the message body.

MACH_SEND_INVALID_TYPE
Invalid msg-type specification.

MACH_SEND_MSG_TOO_SMALL
Data doesn’t contain a complete message.

MACH_SEND_NO_BUFFER
No message buffer is available.

MACH_SEND_NO_NOTIFY
Resource shortage; can’t request msg-accepted notification.

MACH_SEND_NOTIFY_IN_PROGRESS
Msg-accepted notification already pending.

MACH_SEND_TIMED_OUT
Message not sent before time-out expired.

MACH_SEND_WILL_NOTIFY
Msg-accepted notification will be generated.

MIG_ARRAY_TOO_LARGE
User specified array not large enough to hold returned array

MIG_BAD_ARGUMENTS
Server found wrong arguments

MIG_BAD_ID
Bad message ID

MIG_EXCEPTION
Server raised exception

358 Mach 3 Kernel Interfaces

Error Return Values

MIG_NO_REPLY
Server shouldn’t reply

MIG_REMOTE_ERROR
Server detected error

MIG_REPLY_MISMATCH
Wrong return message ID

MIG_SERVER_DIED
Server no longer exists

MIG_TYPE_ERROR
 Type check failure

Mach 3 Kernel Interfaces 359

APPENDIX F Index

Data Structures 323
Device Interface 259
Error Return Values 351
External Memory Management Inter-

face 99
Host Interface 213
IPC Interface . 5
Index . 359
Intel 386 Support. 311
Interface Descriptions 1
Interface Types 2
Introduction. 1
MIG Server Routines 281
Multicomputer Support 299
Parameter Types 3
Port Manipulation Interface 23
Processor Interface 223
Special Forms 3
Task Interface 191
Thread Interface 151
Virtual Memory Interface 73
catch_exception_raise 152
default_pager_info 100
default_pager_object_create 101
device_close 260
device_get_status 261
device_map 263
device_open 265

device_open_request 265
device_read 268
device_read_inband 270
device_read_request. 268
device_read_request_inband 270
device_reply_server 282
device_set_filter. 272
device_set_status 276
device_write. 277
device_write_inband 279
device_write_request 277
device_write_request_inband 279
do_mach_notify_dead_name 24
do_mach_notify_msg_accepted. 26
do_mach_notify_no_senders 28
do_mach_notify_port_deleted 30
do_mach_notify_port_destroyed 32
do_mach_notify_send_once 34
do_seqnos_mach_notify_dead_name 24
do_seqnos_mach_notify_msg_accepted

26
do_seqnos_mach_notify_no_senders 28
do_seqnos_mach_notify_port_deleted .

30
do_seqnos_mach_notify_port_destroye

d . 32
do_seqnos_mach_notify_send_once . 34
ds_device_open_reply 265

360 Mach 3 Kernel Interfaces

Index

ds_device_read_reply 268
ds_device_read_reply_inband 270
ds_device_write_reply 277
ds_device_write_reply_inband 279
evc_wait . 155
exc_server . 284
exception_raise 157
host_adjust_time 214
host_basic_info 324
host_get_boot_info 215
host_get_time. 216
host_info . 217
host_kernel_version 219
host_load_info 325
host_processor_set_priv. 224
host_processor_sets 225
host_processors 227
host_reboot. 220
host_sched_info 326
host_set_time 221
i386_get_ldt 314
i386_io_port_add 316
i386_io_port_list 318
i386_io_port_remove. 320
i386_set_ldt 321
mach_host_self 222
mach_msg . 6
mach_msg_header 327
mach_msg_receive. 21
mach_msg_send. 22
mach_msg_type 330
mach_msg_type_long 333
mach_port_allocate 35
mach_port_allocate_name 37
mach_port_deallocate 39
mach_port_destroy. 40
mach_port_extract_right 42
mach_port_get_receive_status. 44
mach_port_get_refs 45
mach_port_get_set_status 47
mach_port_insert_right 49
mach_port_mod_refs 51
mach_port_move_member 53
mach_port_names 55
mach_port_rename. 57
mach_port_request_notification 59
mach_port_set_mscount 62
mach_port_set_qlimit 63
mach_port_set_seqno. 65
mach_port_status 335
mach_port_type 66
mach_ports_lookup 68

mach_ports_register69
mach_reply_port71
mach_sample_task192
mach_sample_thread 159
mach_task_self194
mach_thread_self161
mapped_time_value337
memory_object_change_attributes . .103
memory_object_change_completed .105
memory_object_copy107
memory_object_create110
memory_object_data_error.113
memory_object_data_initialize.115
memory_object_data_provided 117
memory_object_data_request119
memory_object_data_return121
memory_object_data_supply123
memory_object_data_unavailable . .126
memory_object_data_unlock128
memory_object_data_write 130
memory_object_default_server 286
memory_object_destroy132
memory_object_get_attributes133
memory_object_init 135
memory_object_lock_completed . . .137
memory_object_lock_request.139
memory_object_ready 142
memory_object_server288
memory_object_set_attributes144
memory_object_supply_completed .146
memory_object_terminate 148
norma_get_device_port 300
norma_get_host_paging_port300
norma_get_host_port 301
norma_get_host_priv_port301
norma_get_nameserver_port 301
norma_get_special_port300
norma_port_location_hint.303
norma_set_device_port.304
norma_set_host_paging_port304
norma_set_host_port.305
norma_set_host_priv_port 305
norma_set_nameserver_port.305
norma_set_special_port 304
norma_task_create 307
notify_server290
processor_assign228
processor_basic_info 338
processor_control230
processor_exit232
processor_get_assignment 234
processor_info.235

Mach 3 Kernel Interfaces 361

processor_set_basic_info 339
processor_set_create 237
processor_set_default 239
processor_set_destroy 240
processor_set_info 241
processor_set_max_priority 243
processor_set_policy_disable 245
processor_set_policy_enable 247
processor_set_sched_info 340
processor_set_tasks. 248
processor_set_threads 249
processor_start 250
seqnos_memory_object_change_compl

eted 105
seqnos_memory_object_copy. 108
seqnos_memory_object_create 110
seqnos_memory_object_data_initialize

115
seqnos_memory_object_data_request .

119
seqnos_memory_object_data_return 121
seqnos_memory_object_data_unlock . .

128
seqnos_memory_object_data_write 130
seqnos_memory_object_default_server

292
seqnos_memory_object_init 136
seqnos_memory_object_lock_complete

d . 137
seqnos_memory_object_server 294
seqnos_memory_object_supply_comple

ted 146
seqnos_memory_object_terminate . 148
seqnos_notify_server 296
swtch . 162
swtch_pri . 163
task_assign 252
task_assign_default 254
task_basic_info 341
task_create. 195
task_get_assignment 255
task_get_bootstrap_port 198
task_get_emulation_vector 197
task_get_exception_port 198
task_get_kernel_port 198
task_get_special_port 198
task_info . 200
task_priority 202
task_resume. 204
task_set_bootstrap_port 208
task_set_child_node 309
task_set_emulation 205

task_set_emulation_vector. 206
task_set_exception_port. 208
task_set_kernel_port 208
task_set_special_port 208
task_suspend 210
task_terminate 211
task_thread_times_info 342
task_threads 212
thread_abort 164
thread_assign 256
thread_assign_default 257
thread_basic_info. 343
thread_create 166
thread_depress_abort 168
thread_get_assignment. 258
thread_get_exception_port. 169
thread_get_kernel_port 169
thread_get_special_port 169
thread_get_state 171
thread_info . 173
thread_max_priority. 175
thread_policy 177
thread_priority 179
thread_resume 181
thread_sched_info 345
thread_set_exception_port 182
thread_set_kernel_port. 182
thread_set_special_port 182
thread_set_state 184
thread_suspend. 186
thread_switch 187
thread_terminate 189
thread_wire 190
time_value . 347
vm_allocate . 74
vm_copy. 76
vm_deallocate 78
vm_inherit . 80
vm_machine_attribute 82
vm_map . 84
vm_protect . 88
vm_read . 90
vm_region . 92
vm_set_default_memory_manager . 150
vm_statistics. 348
vm_statistics. 94
vm_wire . 95
vm_write . 97

362 Mach 3 Kernel Interfaces

Index

