Mach 3 Kernel Interfaces

Open Software Foundation and Carnegie
Mellon University

Keith Loepere, Editor

OB |

NORMA-MK12: July 15, 1992

This book is in the Open Software Foundation Mach 3 series.
Books in the OSF Mach 3 series:

Mach 3 Kernel Principles

Mach 3 Kernel Interfaces

Mach 3 Server Writer's Guide

Mach 3 Server Writer's Interfaces

Revision History:

Revision 2 MK67: January 7, 1992 OSF / Mach release
Revision 2.2 NORMA-MK12: July 15, 1992

Change bars indicate changes since MK67.

Copyright© 1990 by the Open Software Foundation and Carnegie Mellon University.

All rights reserved.

This document is partially derived from earlier Mach documents written by Robert V.
Baron, Joseph S. Barrera, David Black, William Bolosky, Jonathan Chew, Richard P.
Draves, Alessandro Forin, David B. Golub, Richard F. Rashid, Mary R. Thompson, Ava-
dis Tevanian, Jr. and Michael W. Young.

Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

Introduction 1
Interface Descriptions 1
Interface Types. 2
Special Forms. 3
Parameter Types. 3
IPClinterface 5
MaCh_MSQ 6
Mach_MSQg receive.t 21
mach_msg send. 22
Port Manipulation Interface 23
do_mach_notify dead name..................... 24
do_mach_notify_msg_accepted. 26
do_mach_notify no senders..................... 28
do_mach_notify port deleted.................... 30
do_mach_notify_port_destroyed.................. 32
do_mach_notify send once 34
mach_port allocate 35
mach_port_allocate name....................... 37
mach_port _deallocate 39
mach_port destroy. 40
mach_port_extract_right 42
mach_port_get receive_status. 44
mach_port get refs........... 45
mach_port get set status 47
mach_port_insert_right 49
mach_port mod refs............... 51
mach_port_move_member. 53
mach_port namest 55
mach_port_rename., 57
mach_port_request_notification. 59
mach_port_set mscount 62
mach_port_set_glimit 63
mach_port_set_ seqno.t 65
mach_port type 66
mach_ports_lookup L 68
mach_ports_register. 69

Mach 3 Kernel Interfaces iii

CHAPTER 4

CHAPTER 5

mach_reply port 71

Virtual Memory Interface 73
vm_allocate 74
VIN COPY . v vt e e e e et e e e 76
vm deallocate 78
vm_inherit 80
vm_machine_attribute L. 82
VI M o ottt e e e e 84
VIN_Protect. 88
vm read 90
VIN_TeQION . ..t 92
vm_statistics. 94
VI Wi . o ot e e e e e e 95
VN W . . 97
External Memory Management Interface. 99
default_pager_info............... 100
default_pager_object create 101
memory_object_change attributes 103
memory_object_change_completed 105
memory_object_ Copy.c i 107
memory _object create. 110
memory_object data_error 113
memory_object_data_initialize 115
memory_object_data provided 117
memory_object data_request 119
memory_object data_return 121
memory_object_data supply.................... 123
memory_object_data_unavailable 126
memory_object _data_unlock.................... 128
memory_object data write 130
memory_object_destroy. 132
memory_object_get_attributes. 133
memory _object init. 135
memory_object_lock_completed. 137
memory_object lock request 139
memory object ready 142
memory_object_set_attributes. 144
memory_object_supply_completed. 146
memory_object terminate. 148

Mach 3 Kernel Interfaces

CHAPTER 6

CHAPTER 7

vm_set_default_memory_manager 150

Thread Interface 151
catch_exception_raise 152
BVC_Wall. 155
EeXCEePtioN_raiSet 157
mach_sample thread 159
mach_thread_self. 161
SWICh ... 162
swtch _pri. 163
thread_abort. 164
thread create 166
thread_depress abort. 168
thread_get_special_port........................ 169
thread get state.............. 171
thread_info........... 173
thread_max_priority. 175
thread_policy 177
thread_priority 179
thread_resume 181
thread_set special_port........................ 182
thread set state 184
thread_suspend. 186
thread_switch. 187
thread_terminate 189
thread_wire 190
Task Interface. L 191
mach_sample task............... 192
mach_task self. 194
task create 195
task_get emulation_vector 197
task _get special port................. 198
task_info......... 200
task_priority. 202
task resume 204
task_set emulation. L 205
task_set _emulation _vector. 206
task set special port............, .. 208
task suspend 210
task terminate 211

Mach 3 Kernel Interfaces \

CHAPTER 8

CHAPTER 9

CHAPTER 10

task threads 212

HostInterface. 213
host_adjust time 214
host get boot info 215
host get time............ 216
host info 217
host_kernel version........................... 219
host reboot. L 220
host set time......... 221
mach_host self 222
Processor Interface., 223
host_processor_set priv. 224
host_processor sets............. ... 225
host_processors ..., 227
ProCesSSOr_asSign v ittt i e 228
processor_control. 230
ProCesSOr_EeXito vttt 232
processor_get assignment...................... 234
processor_info 235
processor_set createiiiiiin 237
processor _set default. 239
processor_set destroy 240
processor set info............................ 241
processor_set max_priority. 243
processor_set policy disable 245
processor_set policy enable.................... 247
processor set tasks 248
processor_set threads 249
processor_start. 250
task_assign. 252
task _assign default 254
task get assignment 255
thread_assign i, 256
thread_assign default 257
thread_get assignment. 258
Device Interface. 259
device close. 260
device get status. 261

Vi

Mach 3 Kernel Interfaces

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

device_mapt 263

device open. 265
device read 268
device read inband................... 270
device _set filter. 272
device_set status 276
device wWrite. 277
device write_inband 279
MIG Server Routines. 281
device reply _server......... 282
EXC _SBIVEI . ittt 284
memory_object_default_server 286
memory _object_server. 288
notify_server 290
segnos_memory_object_default_server............ 292
segnos_memory_object server 294
segnos_notify_server........ 296
Multicomputer Support. 299
norma_get special_port., 300
norma_port_location_hint 303
norma_set _special_port........................ 304
norma_task create................. 307
task_set child_ node................... 309
Intel 386 Support. 311
1386 get Idt........... 314
i386 io port add............ 316
1I386_i0_port list........... 318
iI386_i0_port_ remove. i 320
i386_set Idt 321
Data Structures 323
host basic_info 324
host load info............................... 325
host sched info.............. 326
mach_msg _header.............. 327
mach_msg_type....... 330
mach_msg type long 333

Mach 3 Kernel Interfaces vii

APPENDIX E

APPENDIX F

mach_port status. 335

mapped_time_value. 337
processor_basic info.......................... 338
processor_set basic_info....................... 339
processor_set sched_ info 340
task basic info 341
task thread times info........................ 342
thread_basic_info........... 343
thread_sched info 345
time value 347
vm_statistics. 348
Error Return Values 351
Index 359

viii

Mach 3 Kernel Interfaces

CHAPTER 1 Introduction

This book documents the various interfaces to the Mach 3 kernel. The text describes each
interface to the kernel in isolation. The relationship of interfaces to one another, and the

way that interfaces are combined to write user servers is the subject of a companion vol-
ume.

The organization of this book is such that it follows the organization of the kernel into its
major functional areas. Although the kernel interface is itself not object oriented, the divi-
sion of interfaces into areas is largely done according to the significant object utilized or
manipulated by the interfaces. Each such object receives its own chapter. Of course, the
assignment of interfaces into these chapters is a difficult and highly subjective process.
For example, an interface that returns the list of processor sets defined for a host can be
grouped with host related interfaces or processor set related interfaces. Each interface,
though, appears only once in this book.

Appendices give a description of the structures and fields used by these interfaces, a list

of possible error return values from the kernel and an alphabetical index of functions and
data structures.

Interface Descriptions

Each interface is listed separately, each starting on its own page. For each interface, some
or all of the following features are presented:

The name of the interface
A brief description

Mach 3 Kernel Interfaces 1

Introduction

The pertinent library. All functions in this volume are containedibmach_sa.a
(and, by implicationlibmach.a) unless otherwise noted. Also listed is the header file
that provides the function prototype or defines the data structure (ifaudt.h).

A synopsis of the interface, in C form

An extended description of the function performed by the call
Any macro or special forms of the call

A description of each parameter to the call

Additional notes on the use of the interface

Cautions relating to the interface use

An explanation of the significant return values

References to related interfaces

Interface Types

Most of the interfaces in this book are MIG generated interfaces. That is, they are stub
routines generated from MIG interface description files. Calling these interfaces will ac-
tually result in a Mach IPC message being sent to the port that is the first argument in the
call. This has two important effects.

These calls may fail for various MIG or IPC related reasons. The list of error returns
for these calls should always be considered to also include the IPC related errors
(MACH_MSG_..., MACH_SEND ... and MACH_RCV_...) and the MIG related er-
rors (MIG_...).

These calls only invoke their expected effect when the acting port is indeed a port of
the specified type. That is, if a call expects a port that names a task (a kernel task
port) and the port is instead a port managed by a task, the routine will still happily
generate the appropriate Mach message and send it to that task. What the target task
will do with the message is up to it. Note that it is this effect that allows the Net Mes-
sage server to work.

A few of these interfaces are actually system calls (traps). In general, the system calls
(with the obvious exception of thmach_msgcall) work only on the current task or
thread. (Some functions are a hybrid; they first try the system call, and, failing that, they
try sending a Mach message. This is an optimization for some interfaces for which the
target is usually the invoking task or thread.) Any routine not documented as a system
call is a MIG stub routine.

Most of these interfaces are of the tygnction. This means that there is actually a C
callable function (most likely itibmach.a) that has the calling sequence listed and that
when called invokes some kernel or kernel related service. If the interface is a system
trap instead of a message, it will be listed &ystem Trap

Some interfaces have the tyBerver Interface. Such a description applies to interfaces

that are called in server tasks on behalf of messages sent from the kernel. That is, it is as-
sumed that some task is listening (probably wilich_msg_server on a port to which

the kernel is to send messages. A received message will be passed to a MIG generated

2 Mach 3 Kernel Interfaces

Special Forms

server routinedervice server) which will call an appropriate server target function. It is
these server target functions, one for each different message that the kernel generates,
that are listed aServer Interfaces. For any given kernel message, there are any number

of possible server interface calling sequences that can be generated, by permuting the or-
der of the data provided in the message, omitting some data elements or including or
omitting various header field elements (such as sequence numbers). In most cases, a sin-
gle server interface calling sequence has been chosen with a given MIG generated server
message de-multiplexing routine that calls these interfaces. In some cases, there are more
than one MIG generated server routines which call upon different server interfaces asso-
ciated with that MIG service routine. In any event,Sakver Interfacescontain within

their documentation the name of the MIG generated server routine that invokes the inter-
face.

Special Forms

There are various special interface forms defined in this volume.

The MACRO form specifies macros (typically definednvach.h) that provide short-
hand equivalents for some variations of the longer function call.

The SEQUENCE NUMBER form of aServer Interface defines an additional MIG
generated interface that supplies the sequence number from the message causing the
server interface to be invoked. The existence of such a form implies the existence of
an alternate MIG generated message de-multiplexing routine that invokes this special
interface form.

The ASYNCHRONOUS form defines a MIG generated version ofanction that

allows the function to be invoked asynchronously. Such a version requires an addition-
al parameter to specify the reply port to which the reply is sent. The return value from
the asynchronous function is the return status fronmieh_msgcall sending the re-

quest, not the resulting status of the kernel operation. The asynchronous interface also
requires a matchin§erver Interface that defines the reply message containing data
that would have been output values from the normal function, as well as the resulting
status from the kernel operation.

Parameter Types

Each interface description supplies the C type of the various parameters. The parameter
descriptions then indicate whether these parameters are input (“in”), output (“out”) or
both (“infout”). This information appears in square brackets before the parameter descrip-
tion. Additional information also appears within these brackets for special or non-obvi-
ous parameter conventions.

The most common notation is “scalar”, which means that the parameter somehow de-
rives from arint type. Note that port types are of this form.

If the notation says “structure”, the parameter is a direct structure type whose layout is
described in APPENDIX D.

Mach 3 Kernel Interfaces 3

Introduction

The notation “pointer to in array/structure/scalar” means that the caller supplies a poipter
to the data. Arrays always have this property following from C language rules. If not}so
noted, input parameters are passed by value.

Output parameters are always passed by reference following C language rules. Hende the
notation “out array/structure/scalar” actually means that the caller must supply a poifter
to the storage to receive the output value. If a parameter is in/out, the notation “pointgr to
infout array/structure/scalar” will appear. Since the parameter is also an output pargme-
ter, it must be passed by reference, hence it appears as a “pointer to in array/structurg/sca-
lar” when used as an input parameter.

In contrast, the notation “out pointer to dynamic array” means that the kernel will aljo-
cate space for returned data (as ifvby allocate and will modify the pointer named by
the output parameter (that is, the parameter to the function is a pointer to a pointef) to
point to this allocated memory. The task shoutd deallocatethis space when done ref-
erencing it.

For a Server Interface, the corresponding version of the above is “in pointer to dynajmic
array”. This indicates that the kernel has allocated space for the data (agrif Alo-
cate) and is supplying a pointer to the data as the input parameter to the server intefface
routine. It is the job of the server interface routine to arrange for this datavio lokeal-
located when the data is no longer needed.

An “unbounded out in-line array” specifies the variable in-line/out-of-line (referred to ps
unbounded in-line) array feature of MIG described in Sleever Writer's GuideThe
caller supplies a pointer to a pointer whose value contains the address of an array whose
size is specified in some other parameter (or known implicitly). Upon return, if this target
pointer no longer points to the caller's array (most likely because the caller’s array yas
not sufficiently large to hold the return data), then the kernel allocated space (as if by
vm_allocaté into which the data was placed; otherwise, the data was placed into the sup-
plied array. |

4 Mach 3 Kernel Interfaces

CHAPTER 2 IPC Interface

This chapter discusses the specifics of the kernel’s inter-"process” communication (IPC)
interfaces. The interfaces discussed are only the interfaces directly involved in sending
and receiving IPC messages.

Mach 3 Kernel Interfaces 5

IPC Interface

mach_msg
System Trap / Function— Sends and receives a message using the same mes-
sage buffer
SYNOPSIS
mach_msg_return nhach_msg
(mach_msg_header_t* msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_t notify);

DESCRIPTION

Themach_msgsystem call sends and receives Mach messages. Mach messages
contain typed data, which can include port rights and addresses of large regions
of memory.

If the option argument contains MACH_SEND_MSG, it sends a message. The
send_sizeargument specifies the size of the message to sendm3pe re-
mote_porffield of the message header specifies the destination of the message.

If the option argument contains MACH_RCV_MSG, it receives a message. The
rcv_sizeargument specifies the size of the message buffer that will receive the
message; messages larger than sizeare not received. Theev_nameargu-

ment specifies the port or port set from which to receive.

If the option argument contains both MACH_SEND_ MSG and MACH._-
RCV_MSG, thermach_msgdoes both send and receive operations. If the send
operation encounters an error (any return code other than MACH_MSG_SUC-
CESS), then the call returns immediately without attempting the receive opera-
tion. Semantically the combined call is equivalent to separate send and receive
calls, but it saves a system call and enables other internal optimizations.

If the option argument specifies neither MACH_SEND_MSG nor MACH_-
RCV_MSG, thermach_msgdoes nothing.

Some options, like MACH_SEND_TIMEOUT and MACH_RCV_TIMEOUT,
share a supporting argument. If these options are used together, they make inde-
pendent use of the supporting argument’s value.

6 Mach 3 Kernel Interfaces

mach_msg

PARAMETERS

msg
[pointer to infout structure] A message buffer. This should be aligned
on a long-word boundary.

option
[in scalar] Message options are bit values, combined with bitwise-or.
One or both of MACH_SEND_MSG and MACH_RCV_MSG should
be used.Other options act as modifiers.

send_size
[in scalar] When sending a message, specifies the size of the message
buffer. Otherwise zero should be supplied.

rcv_size
[in scalar] When receiving a message, specifies the size of the message
buffer. Otherwise zero should be supplied.

rcv_name
[in scalar] When receiving a message, specifies the port or port set.
Otherwise MACH_PORT_NULL should be supplied.

timeout
[in scalar] When using the MACH_SEND_TIMEOUT and MACH_-
RCV_TIMEOUT options, specifies the time in milliseconds to wait be-
fore giving up. Otherwise MACH_MSG_TIMEOUT_NONE should be
supplied.

notify
[in scalar] When using the MACH_SEND_NOTIFY, MACH_SEND_-
CANCEL, and MACH_RCV_NOTIFY options, specifies the port used
for the notification. Otherwise MACH_PORT_NULL should be sup-
plied.

NOTES

The Mach kernel provides message-oriented, capability-based inter-process
communication. The inter-process communication (IPC) primitives efficiently
support many different styles of interaction, including remote procedure calls,
object-oriented distributed programming, streaming of data, and sending very
large amounts of data.

Major Concepts
The IPC primitives operate on three abstractions: messages, ports, and port sets.
User tasks access all other kernel services and abstractions via the IPC primi-
tives.

Mach 3 Kernel Interfaces 7

IPC Interface

The message primitives let tasks send and receive messages. Tasks send messag-
es to ports. Messages sent to a port are delivered reliably (messages may not be
lost) and are received in the order in which they were sent. Messages contain a
fixed-size header and a variable amount of typed data following the header. The
header describes the destination and size of the message.

The IPC implementation makes use of the VM system to efficiently transfer
large amounts of data. The message body can contain an address of a region of
the sender’s address space which should be transferred as part of the message.
When a task receives a message containing an out-of-line region of data, the
data appears in an unused portion of the receiver’s address space. This transmis-
sion of out-of-line data is optimized so that sender and receiver share the physi-
cal pages of data copy-on-write, and no actual data copy occurs unless the pages
are written. Regions of memory up to the size of a full address space may be
sent in this manner.

Ports hold a queue of messages. Tasks operate on a port to send and receive mes-
sages by exercising capabilities (rights) for the port. Multiple tasks can hold
send rights for a port. Tasks can also hold send-once rights, which grant the abil-
ity to send a single message. Only one task can hold the receive capability (re-
ceive right) for a port. Port rights can be transferred between tasks via
messages. The sender of a message can specify in the message body that the
message contains a port right. If a message contains a receive right for a port,
then the receive right is removed from the sender of the message and the right is
transferred to the receiver of the message. While the receive right is in transit,
tasks holding send rights can still send messages to the port, and they are
gueued until a task acquires the receive right and uses it to receive the messages.

Tasks can receive messages from ports and port sets. The port set abstraction al-
lows a single thread to wait for a message from any of several ports. Tasks ma-
nipulate port sets with a port set name, which is taken from the same name
space as are the port rights. The port-set name may not be transferred in a mes-
sage. A port set holds receive rights, and a receive operation on a port set blocks
waiting for a message sent to any of the constituent ports. A port may not be-
long to more than one port set, and if a port is a member of a port set, the holder
of the receive right can'’t receive directly from the port.

Port rights are a secure, location-independent way of naming ports. The port
gueue is a protected data structure, only accessible via the kernel's exported
message primitives. Rights are also protected by the kernel; there is no way for
a malicious user task to guess a port's internal name and send a message to a
port to which it shouldn’t have access. Port rights do not carry any location in-
formation. When a receive right for a port moves from task to task, and even be-
tween tasks on different machines, the send rights for the port remain
unchanged and continue to function.

Port Rights
Each task has its own space of port rights. Port rights are named with positive in-
tegers. Except for the reserved values MACH_PORT_NULL (0) and MACH_ -

8 Mach 3 Kernel Interfaces

mach_msg

PORT_DEAD (-1), this is a full 32-bit name space. When the kernel chooses a
name for a new right, it is free to pick any unused name (one which denotes no
right) in the space.

There are three basic kinds of rights: receive rights, send rights and send-once
rights. A port name can name any of these types of rights, a port-set, be a dead
name, or name nothing. Dead names are not capabilities. They act as place-hold-
ers to prevent a name from being otherwise used.

A port is destroyed, or dies, when its receive right is de-allocated. When a port
dies, send and send-once rights for the port turn into dead names. Any messages
queued at the port are destroyed, which de-allocates the port rights and out-of-
line memory in the messages.

Tasks may hold multiple user-references for send rights and dead names. When
a task receives a send right which it already holds, the kernel increments the

right's user-reference count. When a task de-allocates a send right, the kernel

decrements its user-reference count, and the task only loses the send right when
the count goes to zero.

Send-once rights always have a user-reference count of one, although a port can
have multiple send-once rights, because each send-once right held by a task has
a different name. In contrast, when a task holds send rights or a receive right for
a port, the rights share a single name.

Each send-once right generated guarantees the receipt of a single message, ei-
ther a message sent to that send-once right or, if the send-once right is in any
way destroyed, a send-once notification.

A message body can carry port rights; thegt hamemsgtl_namgfield in a

type descriptor specifies the type of port right and how the port right is to be ex-
tracted from the caller. The values MACH_PORT_NULL and MACH._-
PORT_DEAD are always valid in place of a port right in a message body.

In a sent message, the followinggt_namealues denote port rights:

MACH_MSG_TYPE_MAKE_SEND
The message will carry a send right, but the caller must supply a re-
ceive right. The send right is created from the receive right, and the re-
ceive right's make-send count is incremented.

MACH_MSG_TYPE_COPY_SEND
The message will carry a send right, and the caller should supply a
send right. The user reference count for the supplied send right is not
changed. The caller may also supply a dead name and the receiving
task will get MACH_PORT_DEAD.

Mach 3 Kernel Interfaces 9

IPC Interface

MACH_MSG_TYPE_MOVE_SEND

The message will carry a send right, and the caller should supply a
send right. The user reference count for the supplied send right is decre-
mented, and the right is destroyed if the count becomes zero. Unless a
receive right remains, the name becomes available for recycling. The
caller may also supply a dead name, which loses a user reference, and
the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MAKE_SEND_ONCE

The message will carry a send-once right, but the caller must supply a
receive right. The send-once right is created from the receive right.
Note that send once rights can only be created from the receive right.

MACH_MSG_TYPE_MOVE_SEND_ONCE

The message will carry a send-once right, and the caller should supply

a send-once right. The caller loses the supplied send-once right. The

caller may also supply a dead name, which loses a user reference, and
the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MOVE_RECEIVE

The message will carry a receive right, and the caller should supply a
receive right. The caller loses the supplied receive right, but retains any
send rights with the same name.

If a message carries a send or send-once right, and the port dies while the mes-
sage is in transit, then the receiving task will get MACH_PORT_DEAD instead
of a right.

The following msgt_namevalues in a received message indicate that it carries
port rights:

MACH_MSG_TYPE_PORT_SEND

This value is an alias for MACH_MSG_TYPE_MOVE_SEND. The
message carried a send right. If the receiving task already has send and/
or receive rights for the port, then that name for the port will be reused.
Otherwise, the new right will have a new, previously unused, name. If
the task already has send rights, it gains a user reference for the right
(unless this would cause the user-reference count to overflow). Other-
wise, it acquires send rights, with a user-reference count of one.

MACH_MSG_TYPE_PORT_SEND_ONCE

This value is an alias for MACH_MSG_TYPE_MOVE_SEN-
D_ONCE. The message carried a send-once right. The right will have
a new, previously unused, name.

MACH_MSG_TYPE_PORT_RECEIVE

This value is an alias for MACH_MSG_TYPE_MOVE_RECEIVE.
The message carried a receive right. If the receiving task already has
send rights for the port, then that name for the port will be reused. Oth-

10

Mach 3 Kernel Interfaces

mach_msg

erwise, the right will have a new, previously unused, hame. The make-
send count and sequence number of the receive right are reset to zero,
but the port retains other attributes like queued messages, extant send
and send-once rights, and requests for port-destroyed and no-senders
notifications. (Note: It is currently planned to remove port-destroyed
notifications from the kernel interface and to define no-senders notifica-
tions as being canceled when a receive right is moved.)

Memory
A message body can contain an address of a region of the sender’s address
space which should be transferred as part of the message. The message carries a
logical copy of the memory, but the kernel uses VM techniques to defer any ac-
tual page copies. Unless the sender or the receiver modifies the data, the physi-
cal pages remain shared.

An out-of-line transfer occurs when the data’s type descriptor spatifigs in-

line as FALSE. The address of the memory region should follow the type de-
scriptor in the message body. The type descriptor and the address contribute to
the message’s sizednd_sizemsgh_size The out-of-line data does not contrib-

ute to the message’s size.

The name, size, and number fields in the type descriptor describe the type and
length of the out-of-line data, not the address. Out-of-line memory frequently re-
quires long type descriptorméch_msg_type_long)t because thensgt_num-

ber field is too small to describe a page of 4K bytes.

Out-of-line memory arrives somewhere in the receiver's address space as new
memory. It has the same inheritance and protection attributes asvmawdylo-

catéed memory. The receiver has the responsibility of de-allocating uuith-
deallocatg the memory when it is no longer needed. Security-conscious
receivers should exercise caution when dealing with out-of-line memory from
un-trustworthy sources, because the memory may be backed by an unreliable
memory manager.

Null out-of-line memory is legal. If the out-of-line region size is zero (for exam-
ple, becausensgtl numbeiis zero), then the region’s specified address is ig-
nored. A received null out-of-line memory region always has a zero address.

Unaligned addresses and region sizes that are not page multiples are legal. A re-
ceived message can also contain regions with unaligned addresses and funny siz-
es. In the general case, the first and last pages in the new memory region in the
receiver do not contain data from the sender, but are partly zero. The received
address points into the middle of the first page. This possibility doesn’'t compli-
cate de-allocation, becausen_deallocatedoes the right thing, rounding the

start address down and the end address up to de-allocate all arrived pages.

Out-of-line memory has a de-allocate option, controlled byrthgt deallocate
bit. If it is TRUE and the out-of-line memory region is not null, then the region
is implicitly de-allocated from the sender, as ifyoy_deallocate In particular,

Mach 3 Kernel Interfaces 11

IPC Interface

the start and end addresses are rounded so that every page overlapped by the
memory region is de-allocated. The usensgt_deallocateffectively changes

the memory copy into a memory movement. In a received message,deal-
locateis TRUE in type descriptors for out-of-line memory.

Out-of-line memory can carry port rights.

Message Send

The send operation queues a message to a port. The message carries a copy of
the caller's data. After the send, the caller can freely modify the message buffer
or the out-of-line memory regions and the message contents will remain un-
changed.

Message delivery is reliable and sequenced. Messages are not lost, and messag-
es sent to a port from a single thread are received in the order in which they
were sent.

If the destination port's queue is full, then several things can happen. If the mes-
sage is sent to a send-once righs§h_remote_portarries a send-once right),

then the kernel ignores the queue limit and delivers the message. Otherwise the
caller blocks until there is room in the queue, unless the MACH_SEND_TIME-
OUT or MACH_SEND_NOTIFY options are used. If a port has several blocked
senders, then any of them may queue the next message when space in the queue
becomes available, with the proviso that a blocked sender will not be indefinite-

ly starved.

These options modify MACH_SEND_MSG. If MACH_SEND_MSG is not
also specified, they are ignored.

MACH_SEND_TIMEOUT
The timeout argument should specify a maximum time (in millisec-
onds) for the call to block before giving up. If the message can't be
gueued before the timeout interval elapses, then the call returns
MACH_SEND_TIMED_OUT. A zero timeout is legitimate.

MACH_SEND_NOTIFY
The notify argument should specify a receive right for a notify port. If
the send were to block, then instead the message is queued, MACH_-
SEND_WILL_NOTIFY is returned, and a msg-accepted notification is
requested. If MACH_SEND_TIMEOUT is also specified, then
MACH_SEND_NOTIFY doesn't take effect until the timeout interval
elapses.

Only one message at a time can be forcibly queued to a send right with
MACH_SEND_NOTIFY. A msg-accepted natification is sent to the no-
tify port when another message can be forcibly queued. If an attempt is
made to use MACH_SEND_NOTIFY before then, the call returns a
MACH_SEND_NOTIFY_IN_PROGRESS error.

12

Mach 3 Kernel Interfaces

mach_msg

The msg-accepted notification carries the name of the send right. If the
send right is de-allocated before the msg-accepted notification is gener-
ated, then the msg-accepted notification carries the value MACH_-
PORT_NULL. If the destination port is destroyed before the
notification is generated, then a send-once notification is generated in-
stead.

(Note: It is currently planned that this option will be deleted, as well as
the provision of the corresponding notification.)

MACH_SEND_INTERRUPT
If specified, themach_msgcall will return MACH_SEND_INTER-
RUPTED if a software interrupt aborts the call. Otherwise, the send op-
eration will be retried.

MACH_SEND_CANCEL
The notify argument should specify a receive right for a notify port. If
the send operation removes the destination port right from the caller,
and the removed right had a dead-name request registered for it, and
notify is the notify port for the dead-name request, then the dead-name
request may be silently canceled (instead of resulting in what would
have been a port-deleted notification).

This option is typically used to cancel a dead-name request made with
the MACH_RCV_NOTIFY option. It should only be used as an optimi-
zation.

Some return codes, like MACH_SEND_TIMED_OUT, imply that the message
was almost sent, but could not be queued. In these situations, the kernel tries to
return the message contents to the caller with a pseudo-receive operation. This
prevents the loss of port rights or memory which only exist in the message. For
example, a receive right which was moved into the message, or out-of-line mem-
ory sent with the de-allocate bit.

The pseudo-receive operation is very similar to a normal receive operation. The
pseudo-receive handles the port rights in the message header as if they were in
the message body. They are not reversed (as is the appearance in a normal re-
ceived message). After the pseudo-receive, the message is ready to be resent. If
the message is not resent, note that out-of-line memory regions may have
moved and some port rights may have changed names.

The pseudo-receive operation may encounter resource shortages. This is similar
to a MACH_RCV_BODY_ERROR return code from a receive operation. When
this happens, the normal send return codes are augmented with the MACH_MS-
G_IPC_SPACE, MACH_MSG_VM_SPACE, MACH_MSG_IPC_KERNEL,
and MACH_MSG_VM_KERNEL bits to indicate the nature of the resource
shortage.

Mach 3 Kernel Interfaces 13

IPC Interface

The queueing of a message carrying receive rights may create a circular loop of
receive rights and messages, which can never be received. For example, a mes-
sage carrying a receive right can be sent to that receive right. This situation is
not an error, but the kernel will garbage-collect such loops, destroying the mes-
sages.

Message Receive

The receive operation de-queues a message from a port. The receiving task ac-
quires the port rights and out-of-line memory regions carried in the message.

The rcv_nameargument specifies a port or port set from which to receive. If a
port is specified, the caller must possess the receive right for the port and the
port must not be a member of a port set. If no message is present, then the call
blocks, subject to the MACH_RCV_TIMEOUT option.

If a port set is specified, the call will receive a message sent to any of the mem-
ber ports. It is permissible for the port set to have no member ports, and ports
may be added and removed while a receive from the port set is in progress. The
received message can come from any of the member ports which have messag-
es, with the proviso that a member port with messages will not be indefinitely
starved. Themsgh_local_portfield in the received message header specifies
from which port in the port set the message came.

The rcv_sizeargument specifies the size of the caller's message buffer. The
mach_msgcall will not receive a message larger tham size Messages that
are too large are destroyed, unless the MACH_RCV_LARGE option is used.

The destination and reply ports are reversed in a received message header. The
msgh_local_porfield carries the name of the destination port, from which the
message was received, and thegh_remote_ portield carries the reply port

right. The bits inmsgh_bitsare also reversed. The MACH_MSGH_BITS LO-

CAL bits have the value MACH_MSG_TYPE_PORT_SEND if the message
was sent to a send right, and the value MACH_MSG_TYPE_PORT_SEN-
D_ONCE if was sent to a send-once right. The MACH_MSGH_BITS_ RE-
MOTE bits describe the reply port right.

Received messages are stamped with a sequence number, taken from the port
from which the message was received. (Messages received from a port set are
stamped with a sequence number from the appropriate member port.) Newly cre-
ated ports start with a zero sequence number, and the sequence number is reset
to zero whenever the port's receive right moves between tasks. When a message
is de-queued from the port, it is stamped with the port's sequence number and
the port's sequence number is then incremented. The de-queue and increment
operations are atomic, so that multiple threads receiving messages from a port
can use thensgh_seqnéeld to reconstruct the original order of the messages.

A received message can contain port rights and out-of-line memorym$he
gh_local_portfield does not carry a port right; the act of receiving the message
destroys the send or send-once right for the destination portn3die remote_-

14

Mach 3 Kernel Interfaces

mach_msg

port field does carry a port right, and the message body can carry port rights and
memory if MACH_MSGH_BITS COMPLEX is present imsgh_bits Re-
ceived port rights and memory should be consumed or de-allocated in some
fashion.

In almost all casesnsgh_local_portvill specify the name of a receive right, ei-
ther rcv_name or, if rcv_nameis a port set, a member afv_name If other
threads are concurrently manipulating the receive right, the situation is more
complicated. If the receive right is renamed during the call, thegh_lo-
cal_port specifies the right's new name. If the caller loses the receive right after
the message was de-queued from it, tmaxch_msgwill proceed instead of re-
turning MACH_RCV_PORT_DIED. If the receive right was destroyed, then
gh_local_portspecifies MACH_PORT_DEAD. If the receive right still exists,
but isn't held by the caller, themsgh_local_portspecifies MACH_PORT _-
NULL.

These options modify MACH_RCV_MSG. If MACH_RCV_MSG is not also
specified, they are ignored.

MACH_RCV_TIMEOUT
The timeout argument should specify a maximum time (in millisec-
onds) for the call to block before giving up. If no message arrives be-
fore the timeout interval elapses, then the call returns
MACH_RCV_TIMED_OUT. A zero timeout is legitimate.

MACH_RCV_NOTIFY
The notify argument should specify a receive right for a notify port. If
receiving the reply port creates a new port right in the caller, then the
notify port is used to request a dead-name notification for the new port
right.

MACH_RCV_INTERRUPT
If specified, themach_msg call will return MACH_RCV_INTER-
RUPTED if a software interrupt aborts the call. Otherwise, the receive
operation will be retried.

MACH_RCV_LARGE
If the message is larger thanv_size then the message remains
queued instead of being destroyed. The call returns MACH_RCV_-
TOO_LARGE and the actual size of the message is returned insthe
gh_sizefield of the message header. If this option is not specified,
messages too large will be de-queued and then destroyed; the caller re-
ceives the message's header, with all fields correct, including the desti-
nation port but excepting the reply port, which s
MACH_PORT_NULL.

If a resource shortage prevents the reception of a port right, the port right is de-
stroyed and the caller sees the name MACH_PORT_NULL. If a resource short-
age prevents the reception of an out-of-line memory region, the region is

Mach 3 Kernel Interfaces 15

IPC Interface

destroyed and the caller sees a zero address. In additiansgiiesizémsgtl_-

sizg field in the region’s type descriptor is changed to zero. If a resource short-
age prevents the reception of out-of-line memory carrying port rights, then the
port rights are always destroyed if the memory region can not be received. A
task never receives port rights or memory for which it is not told.

The MACH_RCV_HEADER_ERROR return code indicates a resource short-
age in the reception of the message’s header. The reply port and all port rights
and memory in the message body are destroyed. The caller receives the messag-
e’s header, with all fields correct except for the reply port.

The MACH_RCV_BODY_ERROR return code indicates a resource shortage in
the reception of the message’s body. The message header, including the reply
port, is correct. The kernel attempts to transfer all port rights and memory re-
gions in the body, and only destroys those that can’t be transferred.

Atomicity

The mach_msgcall handles port rights in a message header atomically. Port
rights and out-of-line memory in a message body do not enjoy this atomicity
guarantee. The message body may be processed front-to-back, back-to-front,
first out-of-line memory then port rights, in some random order, or even atomi-
cally.

For example, consider sending a message with the destination port specified as
MACH_MSG_TYPE_MOVE_SEND and the reply port specified as
MACH_MSG_TYPE_COPY_SEND. The same send right, with one user-refer-
ence, is supplied for both tinesgh_remote_poendmsgh_local_porfields. Be-
causemach_msg processes the message header atomically, this succeeds. If
msgh_remote_portvere processed befonasgh_local port then mach_msg

would return MACH_SEND_INVALID_REPLY in this situation.

On the other hand, suppose the destination and reply port are both specified as
MACH_MSG_TYPE_MOVE_SEND, and again the same send right with one
user-reference is supplied for both. Now the send operation fails, but because it
processes the header atomicallmach_msg can return either MACH_-
SEND_INVALID_DEST or MACH_SEND_INVALID_REPLY.

For example, consider receiving a message at the same time another thread is de-
allocating the destination receive right. Suppose the reply port field carries a
send right for the destination port. If the de-allocation happens before the de-
gueuing, then the receiver gets MACH_RCV_PORT_DIED. If the de-allocation
happens after the receive, then thegh_local_portand themsgh_remote_port

fields both specify the same right, which becomes a dead name when the re-
ceive right is de-allocated. If the de-allocation happens between the de-queue
and the receive, then thrasgh_local_portand msgh_remote_portields both

specify MACH_PORT_DEAD. Because the header is processed atomically, it is
not possible for just one of the two fields to hold MACH_PORT_DEAD.

16

Mach 3 Kernel Interfaces

mach_msg

The MACH_RCV_NOTIFY option provides a more likely example. Suppose a
message carrying a send-once right reply port is received with MACH_-
RCV_NOTIFY at the same time the reply port is destroyed. If the reply port is
destroyed first, themsgh_remote_pospecifies MACH_PORT_DEAD and the
kernel does not generate a dead-name notification. If the reply port is destroyed
after it is received, themsgh_remote pospecifies a dead name for which the
kernel generates a dead-name notification. It is not possible to receive the reply
port right and have it turn into a dead name before the dead-name notification is
requested; as part of the message header the reply port is received atomically.

Implementation

mach_msgis a wrapper for a system cathach_msghas the responsibility for
repeating the interrupted system call.

CAUTIONS

Sending out-of-line memory with a non-page-aligned address, or a size which is
not a page multiple, works but with a caveat. The extra bytes in the first and last
page of the received memory are not zeroed, so the receiver can peek at more
data than the sender intended to transfer. This might be a security problem for
the sender.

If MACH_RCV_TIMEOUT is used without MACH_RCV_INTERRUPT, then

the timeout duration might not be accurate. When the call is interrupted and au-
tomatically retried, the original timeout is used. If interrupts occur frequently
enough, the timeout interval might never expire. MACH_SEND_TIMEOUT
without MACH_SEND_INTERRUPT suffers from the same problem.

RETURN VALUE

The send operation can generate the following return codes. These return codes
imply that the call did nothing:

MACH_SEND_MSG_TOO_SMALL
The specifiedsend_sizavas smaller than the minimum size for a mes-
sage.

MACH_SEND_NO_BUFFER
A resource shortage prevented the kernel from allocating a message
buffer.

MACH_SEND_INVALID_DATA
The supplied message buffer was not readable.

MACH_SEND_INVALID_HEADER
Themsgh_bitsvalue was invalid.

MACH_SEND_INVALID_DEST
Themsgh_remote_poxalue was invalid.

Mach 3 Kernel Interfaces 17

IPC Interface

MACH_SEND_INVALID_ REPLY
Themsgh_local_portalue was invalid.

MACH_SEND_INVALID_NOTIFY
When using MACH_SEND_CANCEL, thaotify argument did not de-
note a valid receive right.

These return codes imply that some or all of the message was destroyed:

MACH_SEND_INVALID_MEMORY
The message body specified out-of-line data that was not readable.

MACH_SEND_INVALID_RIGHT
The message body specified a port right which the caller didn’t possess.

MACH_SEND_INVALID TYPE
A type descriptor was invalid.

MACH_SEND_MSG_TOO_SMALL
The last data item in the message ran over the end of the message.

These return codes imply that the message was returned to the caller with a
pseudo-receive operation:

MACH_SEND_TIMED_OUT
Thetimeoutinterval expired.

MACH_SEND_INTERRUPTED
A software interrupt occurred.

MACH_SEND_INVALID_NOTIFY
When using MACH_SEND_NOTIFY, theotify argument did not de-
note a valid receive right.

MACH_SEND_NO_NOTIFY
A resource shortage prevented the kernel from setting up a msg-accept-
ed notification.

MACH_SEND_NOTIFY_IN_PROGRESS
A msg-accepted notification was already requested, and hasn't yet
been generated.

These return codes imply that the message was queued:
MACH_SEND_WILL_NOTIFY

The message was forcibly queued, and a msg-accepted notification was
requested.

18

Mach 3 Kernel Interfaces

mach_msg

MACH_MSG_SUCCESS
The message was queued.

The receive operation can generate the following return codes. These return
codes imply that the call did not de-queue a message:

MACH_RCV_INVALID_NAME
The specifiedcv_namewas invalid.

MACH_RCV_IN_SET
The specified port was a member of a port set.

MACH_RCV_TIMED_OUT
Thetimeoutinterval expired.

MACH_RCV_INTERRUPTED
A software interrupt occurred.

MACH_RCV_PORT_DIED
The caller lost the rights specified foy_name

MACH_RCV_PORT_CHANGED
rcv_namespecified a receive right which was moved into a port set dur-
ing the call.

MACH_RCV_TOO_LARGE
When using MACH_RCV_LARGE, and the message was larger than
rcv_size The message is left queued, and its actual size is returned in
themsgh_sizdield of the message buffer.

These return codes imply that a message was de-queued and destroyed:

MACH_RCV_HEADER_ERROR
A resource shortage prevented the reception of the port rights in the
message header.

MACH_RCV_INVALID_NOTIFY
When using MACH_RCV_NOTIFY, thaotify argument did not de-
note a valid receive right.

MACH_RCV_TOO_LARGE
When not using MACH_RCV_LARGE, a message larger toansize
was de-queued and destroyed.

These return codes imply that a message was received:
MACH_RCV_BODY_ERROR

A resource shortage prevented the reception of a port right or out-of-
line memory region in the message body.

Mach 3 Kernel Interfaces 19

IPC Interface

MACH_RCV_INVALID DATA
The specified message buffer was not writable. The calling task did
successfully receive the port rights and out-of-line memory regions in
the message.

MACH_MSG_SUCCESS
A message was received.

Resource shortages can occur after a message is de-queued, while transferring
port rights and out-of-line memory regions to the receiving task. The
mach_msg call returns MACH_RCV_HEADER_ERROR or MACH_RCV_-
BODY_ERROR in this situation. These return codes always carry extra bits (bit-
wise-or’ed) that indicate the nature of the resource shortage:

MACH_MSG_IPC_SPACE
There was no room in the task’s IPC name space for another port name.

MACH_MSG_VM_SPACE
There was no room in the task’s VM address space for an out-of-line
memory region.

MACH_MSG_IPC_KERNEL
A kernel resource shortage prevented the reception of a port right.

MACH_MSG_VM_KERNEL
A kernel resource shortage prevented the reception of an out-of-line
memory region.

RELATED INFORMATION

Functionsmach_msg_receivemach_msg_send

Data Structuresmach_msg_headermach_msg_type mach_msg_type_long,
mach_msg_accepted_notificatigrmach_send_once_notification

20

Mach 3 Kernel Interfaces

mach_msg_receive

mach_msg_receive

Function — Receives a message from a port or port set

LIBRARY
Not declared anywhere.

SYNOPSIS

mach_msg_return mhach_msg_receive
(mach_msg_header_t* header)

DESCRIPTION
Themach_msg_receivdunction is a shorthand for the following call:

mach_msg(header MACH_RCV_MSG, Oheader- msgh_size
header- msgh_local_portMACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

PARAMETERS

header
[pointer to in/out structure] The address of the buffer that is to receive
the message. Thensgh_local_portand msgh_sizefields in header
must be set.

RETURN VALUE

Refer tomach_msgfor a description of the various receive errors.

RELATED INFORMATION

Functionsmach_msg mach_msg_send

Data Structuresnach_msg_heademach_msg_typemach_msg_type_long

Mach 3 Kernel Interfaces 21

IPC Interface

mach_msg_send

Function — Sends a message to a port

LIBRARY
Not declared anywhere.

SYNOPSIS

mach_msg_return mhach_msg_send |
(mach_msg_header_t* heade};

DESCRIPTION
Themach_msg_sendunction is a shorthand for the following call:
mach_msg(headey MACH_SEND_MSG header- msgh_size0, |

MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

PARAMETERS
header

[pointer to in structure] The address of the buffer that contains the mgs-
sage to be sent.

RETURN VALUE
Refer tomach_msgfor a description of the send errors.

RELATED INFORMATION
Functionsmach_msg mach_msg_receive

Data Structuresnach_msg_heademach_msg_typemach_msg_type long |

22 Mach 3 Kernel Interfaces

CHAPTER 3 Port Manipulation
Interface

This chapter discusses the specifics of the kernel’s port manipulation interfaces. This in-
cludes port, port set and port right related functions. Also included are interfaces that re-
turn port related status information that applies to a single task.

Mach 3 Kernel Interfaces 23

Port Manipulation Interface

do_mach_notify_dead_name

Server Interface— Handles the occurrence of a dead-name notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_dead_name
(notify_port_t notify,
mach_port_name_t name)

DESCRIPTION

A do_mach_notify_dead_namdunction is called bynotify_server as the re-

sult of a kernel message indicating that the port name is now dead as the r¢sult
of the associated receive right having died. In contrast, a port-deleted notififa-
tion indicates that the port name is no longer usable (that is, it no longer nahes
a valid right), typically as a result of the right so nhamed being consumed Jor
moved.notifyis the port named viaach_port_request_notification

SEQUENCE NUMBER FORM

do_segnos_mach_notify _dead _name
kern_return_tlo_seqnos_mach_notify_dead name

(notify_port_t notify,
mach_port_seqno_t segngQ
mach_port_name_t name)
PARAMETERS
notify
[in scalar] The port to which the naotification was sent. |
segno
[in scalar] The sequence number of this message relative to the notififa-
tion port.
name
[in scalar] The dead name. |

RETURN VALUE

KERN_SUCCESS
The notification was received.

24 Mach 3 Kernel Interfaces

do_mach_notify_dead_name

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_noatification,
do_mach_notify_msg_accepteddo_mach_notify_no_sendersdo_mach_no-
tify_port_deleted, do_mach_notify_port_destroyed do_mach_notify_sen-
d_once.

25

Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify _msg_accepted

Server Interface — Handles the occurrence of a message accepted notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_msg_accepted
(notify_port_t notify,
mach_port_name_t name)

DESCRIPTION

A do_mach_notify_msg_acceptedunction is called bynotify_server as the |
result of a kernel message indicating that a message forcibly queued to a port
via MACH_NOTIFY_SEND was acceptechotify is the port named via
mach_msg

(Note: This feature is current planned for deletion.)

SEQUENCE NUMBER FORM

do_segnos_mach_notify msg_accepted
kern_return_tlo_seqnos_mach_notify _msg_accepted

(notify_port_t notify,
mach_port_seqno_t segnoQ
mach_port_name_t name)
PARAMETERS
notify
[in scalar] The port to which the naotification was sent. |
segno
[in scalar] The sequence number of this message relative to the notififa-
tion port.
name
[in scalar] The port whose message was accepted. |

RETURN VALUE

KERN_SUCCESS
The notification was received.

26 Mach 3 Kernel Interfaces

do_mach_notify_msg_accepted

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_noatification,
do_mach_notify_dead_name do_mach_notify_no_sendersdo_mach_noti-
fy_port_deleted do_mach_notify port_destroyed do_mach_notify_sen-

d_once.

Mach 3 Kernel Interfaces 27

Port Manipulation Interface

do_mach_notify _no_senders

Server Interface— Handles the occurrence of a no-more-senders notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_no_senders
(notify_port_t notify,
mach_port_mscount_t mscount)

DESCRIPTION

A do_mach_notify_no_sendergunction is called bynotify_server as the re-
sult of a kernel message indicating that a receive right has no more santers.
fy is the port named viaach_port_request_notification

SEQUENCE NUMBER FORM

do_segnos_mach_notify _no_senders
kern_return_tlo_seqnos_mach_notify no_senders

(notify_port_t notify,
mach_port_seqno_t segnQ
mach_port_mscount_t mscount)
PARAMETERS
notify
[in scalar] The port to which the naotification was sent. |
segno
[in scalar] The sequence number of this message relative to the notififa-
tion port.
mscount
[in scalar] The value the port's make-send count had when it was genpr-
ated.

RETURN VALUE

KERN_SUCCESS
The notification was received.

28 Mach 3 Kernel Interfaces

do_mach_notify_no_senders

RELATED INFORMATION
Functions: notify_server, mach_msg mach_port_request_noatification,
do_mach_notify_msg_acceptedio_mach_notify_dead _namgdo_mach_no-
tify_port_deleted, do_mach_notify_port_destroyed do_mach_notify_sen-
d_once.

29

Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify _port_deleted

Server Interface — Handles the occurrence of a port-deleted notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_port_deleted
(notify_port_t notify,
mach_port_name_t name)

DESCRIPTION

A do_mach_notify_port_deletedfunction is called byotify_server as the re-
sult of a kernel message indicating that a port name is no longer usable (th& is,
it no longer names a valid right), typically as a result of the right so named fje-

ing consumed or moved. In contrast, a dead-name notification indicates thatjthe
port name is now dead as the result of the associated receive right having died.
notify is the port named viaach_port_request_notification

SEQUENCE NUMBER FORM

do_segnos_mach_notify port_deleted
kern_return_tlo_seqnos_mach_notify port_deleted

(notify_port_t notify,
mach_port_seqno_t segnQ
mach_port_name_t name)
PARAMETERS
notify
[in scalar] The port to which the naotification was sent.
segno
[in scalar] The sequence number of this message relative to the notifiga-
tion port.
name

[in scalar] The invalid name.

RETURN VALUE

KERN_SUCCESS
The notification was received.

30 Mach 3 Kernel Interfaces

do_mach_notify_port_deleted

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_noatification,
do_mach_notify_dead_namedo_mach_notify_msg_acceptedlo_mach_no-
tify_no_senders do_mach_notify port_destroyed do_mach_notify_sen-
d_once.

31

Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify _port_destroyed

Server Interface — Handles the occurrence of a port destroyed notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_port_destroyed
(notify_port_t notify,
mach_port_receive_t rights);

DESCRIPTION

A do_mach_notify_port_destroyedfunction is called bynotify _server as the
result of a kernel message indicating that a receive right would have been de-
stroyed.notify is the port named viaach_port_request_notification

(Note: This feature is currently planned for deletion.)

SEQUENCE NUMBER FORM

do_segnos_mach_notify port_destroyed
kern_return_tlo_seqnos_mach_notify port destroyed

(notify_port_t notify,
mach_port_seqno_t segnQ
mach_port_receive_t rights);
PARAMETERS
notify
[in scalar] The port to which the naotification was sent. |
segno
[in scalar] The sequence number of this message relative to the notififa-
tion port.
rights
[in scalar] The receive right that would have been destroyed. |

RETURN VALUE

KERN_SUCCESS
The notification was received.

32 Mach 3 Kernel Interfaces

do_mach_notify_port_destroyed

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_noatification,
do_mach_notify_msg_accepteddo_mach_notify_no_sendersdo_mach_no-
tify dead _name do_mach_notify_port _deleted do_mach_notify_sen-
d_once.

33

Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_send_once

Server Interface— Handles the occurrence of a send-once notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tlo_mach_notify_send_once
(notify_port_t notify);

DESCRIPTION

A do_mach_notify_send_oncéunction is called byotify_server as the result
of a kernel message indicating that a send-once right was in any way destroyed.
notify is the port named viaach_msg

SEQUENCE NUMBER FORM

do_segnos_mach_notify_send_once
kern_return_tlo_seqnos_mach_notify_send_once

(notify_port_t notify,
mach_port_seqno_t seqgno)
PARAMETERS
notify
[in scalar] The port to which the naotification was sent. |
segno

[in scalar] The sequence number of this message relative to the notififa-
tion port.

RETURN VALUE

KERN_SUCCESS
The notification was received.

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_notification,
do_mach_notify_msg_accepteddo_mach_notify_no_sendersdo_mach_no-
tify_port_deleted, do_mach_notify_port_destroyed do_mach_notify_-
dead_name.

34 Mach 3 Kernel Interfaces

mach_port_allocate

mach_port_allocate

Function — Creates a port right

SYNOPSIS
kern_return_tnach_port_allocate
(mach_port_t task,
mach_port_right_t right,
mach_port_t* name);

DESCRIPTION

The mach_port_allocatefunction creates a new right in the specified task. The
new right's name is returned mame

PARAMETERS

task
[in scalar] The task acquiring the port right.

right

[in scalar] The kind of entity to be created. This is one of the following:

MACH_PORT_RIGHT_RECEIVE
mach_port_allocate creates a port. The new port is not a
member of any port set. It doesn’t have any extant send or
send-once rights. Its make-send count is zero, its sequence
number is zero, its queue limit is MACH_PORT_QLIM-
IT_DEFAULT, and it has no queued messagesnedenotes
the receive right for the new port.
task does not hold send rights for the new port, only the re-
ceive right.mach_port_insert_right andmach_port_extrac-
t right can be used to convert the receive right into a
combined send/receive right.

MACH_PORT_RIGHT_PORT_SET
mach_port_allocate creates a port set. The new port set has
no members.

MACH_PORT_RIGHT_DEAD_NAME
mach_port_allocate creates a dead name. The new dead
name has one user reference.

name

[out scalar] The task’s name for the port right. This can be any name
that wasn't in use.

Mach 3 Kernel Interfaces 35

Port Manipulation Interface

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_VALUE
right was invalid.

KERN_NO_SPACE
There was no room itasks IPC name space for another right.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION

Functions:mach_port_allocate_name mach_port_deallocate, mach_port_-
insert_right, mach_port_extract_right.

36 Mach 3 Kernel Interfaces

mach_port_allocate_name

mach_port_allocate_name

Function — Creates a port right with a given hame

SYNOPSIS
kern_return_tnach_port_allocate_name
(mach_port_t task,
mach_port_right_t right,
mach_port_t name;

DESCRIPTION

The mach_port_allocate_namefunction creates a new right in the specified
task, with a specified name for the new right.

PARAMETERS

task
[in scalar] The task acquiring the port right.

right
[in scalar] The kind of right which will be created. This is one of the
following values:

MACH_PORT_RIGHT_RECEIVE
mach_port_allocate_namecreates a port. The new port is
not a member of any port set. It doesn’t have any extant send
or send-once rights. Its make-send count is zero, its sequence
number is zero, its queue limit is MACH_PORT_QLIM-
IT_DEFAULT, and it has no queued messagesnedenotes
the receive right for the new port.

task does not hold send rights for the new port, only the re-
ceive right.mach_port_insert_right andmach_port_extrac-

t right can be used to convert the receive right into a
combined send/receive right.

MACH_PORT_RIGHT_PORT_SET
mach_port_allocate_namecreates a port set. The new port
set has no members.

MACH_PORT_RIGHT_DEAD_NAME
mach_port_allocate_namecreates a new dead name. The
new dead name has one user reference.

Mach 3 Kernel Interfaces 37

Port Manipulation Interface

name
[in scalar] The task’s name for the port righimemust not already be |
in use for some right, and it can’t be the reserved values MACH_-
PORT_NULL and MACH_PORT_DEAD.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_VALUE
right was invalid.

KERN_INVALID_VALUE
namewas MACH_PORT_NULL or MACH_PORT_DEAD.

KERN_NAME_EXISTS
namewas already in use for a port right.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION

Functionsmach_port_allocate mach_port_deallocate mach_port_rename

38 Mach 3 Kernel Interfaces

mach_port_deallocate

mach_port_deallocate

Function — Releases a user reference for a right

SYNOPSIS

kern_return_tnach_port_deallocate
(mach_port_t
mach_port_t

DESCRIPTION

task,
name);

The mach_port_deallocatefunctionreleases a user reference for a right. It is
an alternate form afmach_port_mod_refsthat allows a task to release a user
reference for a send or send-once right without failing if the port has died and

the right is now actually a dead name.

If namedenotes a dead name, send right, or send-once right, then the right loses
one user reference. If it only had one user reference, then the right is destroyed.

PARAMETERS

task
[in scalar] The task holding the right.

name

[in scalar] The task’s name for the right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted an invalid right.

RELATED INFORMATION

Functions:mach_port_allocate mach_port_allocate_name, mach_port_mo-

d_refs.

Mach 3 Kernel Interfaces

39

Port Manipulation Interface

mach_port_destroy

Function — Removes a task’s rights for a name

SYNOPSIS
kern_return_tnach_port_destroy
(mach_port_t task
mach_port_t name)

DESCRIPTION

The mach_port_destroy function de-allocates all rights denoted by a name.
The name becomes immediately available for reuse.

For most purposespach_port_mod_refsandmach_port_deallocateare pref-
erable.

If namedenotes a port set, then all members of the port set are implicitly re-
moved from the port set.

If namedenotes a receive right that is a member of a port set, the receive right is
implicitly removed from the port set. If there is a port-destroyed request regis-
tered for the port, then the receive right is not actually destroyed, but instead is
sent in a port-destroyed notification. (Note: Port destroyed notifications are cur-
rently planned for deletion.) If there is no registered port-destroyed request, re-
maining messages queued to the port are destroyed and extant send and send-
once rights turn into dead names. If those send and send-once rights have dead-
name requests registered, then dead-name notifications are generated for them.

If namedenotes a send-once right, then the send-once right is used to produce a
send-once notification for the port.

If namedenotes a send-once, send, and/or receive right, and it has a dead-name
request registered, then the registered send-once right is used to produce a port-
deleted notification for the name.

PARAMETERS
task
[in scalar] The task holding the right. |
name
[in scalar] The task’s name for the right. |

40 Mach 3 Kernel Interfaces

mach_port_destroy

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

RELATED INFORMATION

Functions:mach_port_allocate mach_port_allocate_name, mach_port_mo-
d_refs, mach_port_deallocate mach_port_request_notification

Mach 3 Kernel Interfaces 41

Port Manipulation Interface

mach_port_extract_right

Function — Extracts a port right from a task

SYNOPSIS
kern_return_tnach_port_extract_right
(mach_port_t task,
mach_port_t name,
mach_msg_type _name_t desired_type,
mach_port_t* right,
mach_msg_type_name_t* acquired_type)

DESCRIPTION

The mach_port_extract_right function extracts a port right from the target
task and returns it to the caller as if the task sent the right voluntarily, desing
sired_typeas the value ahsgt nameSeemach_msg

The returned value o&cquired_typewill be MACH_MSG_TYPE_PORT_S-
END if a send right is extracted, MACH_MSG_TYPE_PORT_RECEIVE if a re-
ceive right is extracted, and MACH_MSG_TYPE_PORT_SEND_ONCE if a
send-once right is extracted.

PARAMETERS
task
[in scalar] The task holding the port right. |
name
[in scalar] The task’s name for the port right. |

desired_type
[in scalar] IPC type, specifying how the right should be extracted. |

right
[out scalar] The extracted right.

acquired_type
[out scalar] The type of the extracted right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

42 Mach 3 Kernel Interfaces

mach_port_extract_right

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted an invalid right.

KERN_INVALID_VALUE
desired_typeavas invalid.

RELATED INFORMATION
Functionsmach_port_insert_right, mach_msg

Mach 3 Kernel Interfaces

43

Port Manipulation Interface

mach_port_get_receive_status

Function — Returns the status of a receive right

SYNOPSIS
kern_return_tnach_port_get_receive_status
(mach_port_t task,
mach_port_t name,
mach_port_status_t* status)

DESCRIPTION

The mach_port_get_receive_statugunction returns the current status of the
specified receive right.

PARAMETERS

task
[in scalar] The task holding the receive right.

name
[in scalar] The task’s name for the receive right.

status
[out structure] The status information for the receive right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a receive right.

RELATED INFORMATION

Functions: mach_port_set_glimit, mach_port_set_mscount mach_port_s-
et_seqno

Data Structuresnach_port_status

44 Mach 3 Kernel Interfaces

mach_port_get_refs

mach_port_get_refs

Function — Retrieves the number of user references for a right

SYNOPSIS
kern_return_tnach_port_get refs
(mach_port_t task,
mach_port_t name,
mach_port_right_t right,
mach_port_urefs_t* refs),

DESCRIPTION

The mach_port_get_refsfunction returns the number of user references a task
has for a right.

If namedenotes a right, but not the type of right specified, then zero is returned.

Otherwise a positive number of user references is returned. Note a name may si-
multaneously denote send and receive rights.

PARAMETERS

task
[in scalar] The task holding the right.

name
[in scalar] The task’s name for the right.

right
[in scalar] The type of right / entity being examined: MACH_POR-
T_RIGHT_SEND, MACH_PORT_RIGHT_RECEIVE, MACH_POR-
T_RIGHT_SEND_ONCE, MACH_PORT_RIGHT_PORT_SET or
MACH_PORT_RIGHT_DEAD_NAME.

refs

[out scalar] Number of user references.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

Mach 3 Kernel Interfaces 45

Port Manipulation Interface

KERN_INVALID_VALUE
right was invalid.

KERN_INVALID_NAME
namedid not denote a right.

RELATED INFORMATION
Functionsmach_port_mod_refs

46 Mach 3 Kernel Interfaces

mach_port_get_set_status

mach_port_get_set_status

Function — Returns the members of a port set

SYNOPSIS
kern_return_tnach_port_get_set_status
(mach_port_t task,
mach_port_t name,
mach_port_array t* members,
mach_msg_type _number_t* count)

DESCRIPTION

The mach_port_get _set_statusfunction returns the members of a port set.
membergs an array that is automatically allocated when the reply message is re-
ceived.

PARAMETERS

task
[in scalar] The task holding the port set.

name
[in scalar] The task’s name for the port set.

members
[out pointer to dynamic array ofiach_port_}t The task’s names for the
port set's members.

count

[out scalar] The number of member names returned.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a port set.

Mach 3 Kernel Interfaces 47

Port Manipulation Interface

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION

Functionsmach_port_move_membervm_deallocate

48 Mach 3 Kernel Interfaces

mach_port_insert_right

mach_port_insert_right

Function — Inserts a port right into a task

SYNOPSIS
kern_return_tnach_port_insert_right
(mach_port_t task,
mach_port_t name,
mach_port_t right,
mach_msg_type name_t right_type)

DESCRIPTION

The mach_port_insert_right function inserts intdask the caller’s right for a
port, using a specified name for the right in the target task.

The specifiechamecan’t be one of the reserved values MACH_PORT_NULL
or MACH_PORT_DEAD. Theright cant be MACH_PORT_NULL or
MACH_PORT_DEAD.

The argumentight_type specifies a right to be inserted and how that right
should be extracted from the caller. It should be a value appropriatesér -
name seemach_msg

If right_type is MACH_MSG_TYPE_MAKE_SEND, MACH_MSG_TYPE_-
MOVE_SEND, or MACH_MSG_TYPE_COPY_SEND, then a send right is in-
serted. If the target already holds send or receive rights for the porpahen

should denote those rights in the target. Otherwiaejeshould be unused in

the target. If the target already has send rights, then those send rights gain an ad-
ditional user reference. Otherwise, the target gains a send right, with a user refer-
ence count of one.

If right_typeis MACH_MSG_TYPE_MAKE_SEND_ONCE or MACH_MSG_-
TYPE_MOVE_SEND_ONCE, then a send-once right is inserted. ndme
should be unused in the target. The target gains a send-once right.

If right_typeis MACH_MSG_TYPE_MOVE_RECEIVE, then a receive right is
inserted. If the target already holds send rights for the portndmaeshould de-
note those rights in the target. Otherwisameshould be unused in the target.
The receive right is moved into the target task.

PARAMETERS

task
[in scalar] The task which gets the caller’s right.

Mach 3 Kernel Interfaces 49

Port Manipulation Interface

name

[in scalar] The name by whidhskwill know the right. |
right

[in scalar] The port right. |
right_type

[in scalar] IPC type of the sent right; e.g., MACH_MSG_TYPE_4
COPY_SEND or MACH_MSG_TYPE_MOVE_RECEIVE.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_VALUE
namewas MACH_PORT_NULL or MACH_PORT_DEAD.

KERN_NAME_EXISTS
namealready denoted a right.

KERN_INVALID_VALUE
right was not a port right.

KERN_INVALID_CAPABILITY
right was null or dead.

KERN_UREFS_OVERFLOW
Inserting the right would overflowamés user-reference count.

KERN_RIGHT_EXISTS
taskalready had rights for the port, with a different name.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION

Functionsmach_port_extract_right, mach_msg

50 Mach 3 Kernel Interfaces

mach_port_mod_refs

mach_port_mod_refs

Function — Changes the number of user refs for a right

SYNOPSIS
kern_return_tnach_port_mod_refs
(mach_port_t task,
mach_port_t name,
mach_port_right_t right,
mach_port_delta t delta);

DESCRIPTION

The mach_port_mod_refsfunction requests that the number of user references
a task has for a right be changed. This results in the right being destroyed, if the
number of user references is changed to zero.

The nameshould denote the specified right. The number of user references for
the right is changed by the amouglta subject to the following restrictions:

port sets, receive rights, and send-once rights may only have one user reference.
The resulting number of user references can't be negative. If the resulting num-
ber of user references is zero, the effect is to de-allocate the right. For dead
names and send rights, there is an implementation-defined maximum number of
user references.

If the call destroys the right, then the effect is as describechdch_port_de-
stroy, with the exception thanhach_port_destroy simultaneously destroys all
the rights denoted by a name, whiteach_port mod_refscan only destroy
one right. The name will be available for reuse if it only denoted the one right.

PARAMETERS

task
[in scalar] The task holding the right.

name
[in scalar] The task’s name for the right.

right
[in scalar] The type of right / entity being modified: MACH_POR-
T_RIGHT_SEND, MACH_PORT_RIGHT_RECEIVE, MACH_POR-
T_RIGHT_SEND_ONCE, MACH_PORT_RIGHT_PORT_SET or
MACH_PORT_RIGHT_DEAD_NAME.

delta

[in scalar] Signed change to the number of user references.

Mach 3 Kernel Interfaces 51

Port Manipulation Interface

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_VALUE
right was invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not the specified right.

KERN_INVALID_VALUE
The user-reference count would become negative.

KERN_UREFS_OVERFLOW
The user-reference count would overflow.

RELATED INFORMATION
Functionsmach_port_destroy mach_port_get_refs

52 Mach 3 Kernel Interfaces

mach_port_move_member

mach_port_move_member

Function — Moves a receive right into/out of a port set

SYNOPSIS
kern_return_tnach_port_move_member
(mach_port_t task,
mach_port_t member,
mach_port_t after);

DESCRIPTION

The mach_port_move_memberfunction moves a receive right into a port set.

If the receive right is already a member of another port set, it is removed from
that set first. If the port set is MACH_PORT_NULL, then the receive right is
not put into a port set, but removed from its current port set.

PARAMETERS

task
[in scalar] The task holding the port set and receive right.

member
[in scalar] The task’s name for the receive right.

after
[in scalar] The task’s name for the port set.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
memberdid not denote a right.

KERN_INVALID_RIGHT
memberdenoted a right, but not a receive right.

KERN_INVALID_NAME
afterdid not denote a right.

Mach 3 Kernel Interfaces 53

Port Manipulation Interface

KERN_INVALID_RIGHT
after denoted a right, but not a port set.

KERN_NOT_IN_SET
after was MACH_PORT_NULL, butmemberwasn’t currently in a
port set.

RELATED INFORMATION
Functionsmach_port_get set statusmach_port_get receive_status

54 Mach 3 Kernel Interfaces

mach_port_names

mach_port_names

Function — Return information about a task’s port name space

SYNOPSIS
kern_return_tnach_port_names
(mach_port_t task,
mach_port_array_t* names,
mach_msg_type number_t* ncount,
mach_port_type_array_t* types,
mach_msg_type _number_t* tcount)

DESCRIPTION

The mach_port_namesreturns information abouasKs port name space. It re-
turnstasKs currently active names, which represent some port, port set, or dead
name right. For each name, it also returns what type of righksholds (the
same information returned loyach_port_type).

PARAMETERS

task
[in scalar] The task whose port name space is queried.

names
[out pointer to dynamic array ohach_port_} The names of the ports,
port sets, and dead names in the task’s port name space, in no particu-
lar order.

ncount
[out scalar] The number of names returned.

types
[out pointer to dynamic array ahach_port_type]tThe type of each
corresponding name. Indicates what kind of rights the task holds with
that name.

tcount

[out scalar] Should be the samenasunt

RETURN VALUE

KERN_SUCCESS
The call succeeded.

Mach 3 Kernel Interfaces 55

Port Manipulation Interface

KERN_INVALID_TASK
taskwas invalid.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION

Functionsmach_port_type, vm_deallocate

56

Mach 3 Kernel Interfaces

mach_port_rename

mach_port_rename

Function — Change a task’s name for a right

SYNOPSIS
kern_return_tnach_port_rename
(mach_port_t task,
mach_port_t old_name,
mach_port_t new_name)

DESCRIPTION

The mach_port_renamefunction changes the name by which a port, port set,
or dead name is known task new_namemust not already be in use, and it

can't be the distinguished values MACH_PORT_NULL and MACH._-
PORT_DEAD.

PARAMETERS

task
[in scalar] The task holding the port right.

old_name
[in scalar] The original name of the port right.

new_name
[in scalar] The new name for the port right.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
old_namedid not denote a right.

KERN_INVALID_VALUE
new_nameavas MACH_PORT_NULL or MACH_PORT_DEAD.

KERN_NAME_EXISTS
new_namalready denoted a right.

Mach 3 Kernel Interfaces 57

Port Manipulation Interface

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

RELATED INFORMATION

Functionsmach_port_names

58 Mach 3 Kernel Interfaces

mach_port_request_notification

mach_port_request_notification

Function — Request a notification of a port event

SYNOPSIS
kern_return_tnach_port_request_notification
(mach_port_t task,
mach_port_t name,
mach_msg_id_t variant,
mach_port_mscount_t sync,
mach_port_t notify,
mach_msg_type name_t notify_type,
mach_port_t* previous)

DESCRIPTION

Themach_port_request_notificationfunction registers a request for a natifica-
tion and supplies a send-once right that the notification will use. It is an atomic
swap, returning the previously registered send-once right (or MACH_PORT _-
NULL for none). A notification request may be cancelled by providing MACH_ -
PORT_NULL.

Thevariant argument takes the following values:

MACH_NOTIFY_PORT_DESTROYED
syncmust be zero. Theamemust specify a receive right, and the call
requests a port-destroyed notification for the receive right. If the re-
ceive right were to have been destroyed, saynbgh_port_destroy
then instead the receive right will be sent in a port-destroyed notifica-
tion to the registered send-once right.

(Note: This feature is currently planned for deletion.)

MACH_NOTIFY_DEAD_NAME
The call requests a dead-name notificatioame specifies send, re-
ceive, or send-once rights for a port. If the port is destroyed (and the
right remains, becoming a dead name), then a dead-name notification
which carries the name of the right will be sent to the registered send-
once right. Ifsyncis non-zero, th@amemay specify a dead name, and
a dead-name notification is immediately generated.

Whenever a dead-name notification is generated, the user reference
count of the dead name is incremented. For example, a send right with
two user refs has a registered dead-name request. If the port is de-
stroyed, the send right turns into a dead name with three user refs (in-
stead of two), and a dead-name notification is generated.

Mach 3 Kernel Interfaces 59

Port Manipulation Interface

If the name is made available for reuse, perhaps becausaatf -
port_destroy or mach_port_mod_refs or the name denotes a send-
once right which has a message sent to it, then the registered send-once
right is used to generate a port-deleted naotification instead.

MACH_NOTIFY_NO_SENDERS
The call requests a no-senders notificatiomme must specify a re-
ceive right. If the receive right's make-send count is greater than or
equal to the sync value, and it has no extant send rights, than an imme-
diate no-senders notification is generated. Otherwise the notification is
generated when the receive right next loses its last extant send right. In
either case, any previously registered send-once right is returned.

The no-senders notification carries the value the port's make-send
count had when it was generated. The make-send count is incremented
whenever MACH_MSG_TYPE_MAKE_SEND is used to create a new
send right from the receive right. The make-send count is reset to zero
when the receive right is carried in a message.

(Note: Currently, moving a receive right does not affect any extant no-
senders notifications. It is currently planned to change this so that no-
senders notifications are canceled, with a send-once notification sent to
indicate the cancelation.)

PARAMETERS

task

[in scalar] The task holding the specified right. |
name

[in scalar] The task’s name for the right. |
variant

[in scalar] The type of natification. |
sync

[in scalar] Some variants use this value to overcome race conditions. |

notify
[in scalar] A send-once right, to which the notification will be sent. |
notify_type
[in scalar] IPC type of the sent right; either MACH_MSG_TYPE_
MAKE_SEND_ONCE or MACH_MSG_TYPE_MOVE_SEN-
D_ONCE.
previous

[out scalar] The previously registered send-once right.

60

Mach 3 Kernel Interfaces

mach_port_request_notification

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID TASK
taskwas invalid.

KERN_INVALID VALUE
variantwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted an invalid right.

KERN_INVALID_CAPABILITY
notify was invalid.

When using MACH_NOTIFY_PORT_DESTROYED:

KERN_INVALID_VALUE
syncwas not zero.

When using MACH_NOTIFY_DEAD_NAME:

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

KERN_INVALID_ARGUMENT
namedenotes a dead name, byhcis zero omotifyis null.

KERN_UREFS_OVERFLOW
namedenotes a dead name, but generating an immediate dead-name
notification would overflow the name’s user-reference count.

RELATED INFORMATION
Functionsmach_port_get_receive_status

Mach 3 Kernel Interfaces 61

Port Manipulation Interface

mach_port_set_mscount

Function — Changes the make-send count of a port

SYNOPSIS

kern_return_tmach_port_set_mscount
(mach_port_t

task,
mach_port_t name,
mach_port_mscount_t mscount)

DESCRIPTION

The mach_port_set_mscountfunction changes the make-send countasKs
receive right namedame All values formscountare valid.

PARAMETERS

task

[in scalar] The task owning the receive right.

name

[in scalar]tasks name for the receive right.
mscount

[in scalar] New value for the make-send count for the receive right

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a receive right.

RELATED INFORMATION

Functionsmach_port_get_receive_statusmach_port_set_glimit.

62

Mach 3 Kernel Interfaces

mach_port_set_glimit

mach_port_set_qlimit

Function — Changes the queue limit of a port

SYNOPSIS
kern_return_tnach_port_set_glimit
(mach_port_t task,
mach_port_t name,
mach_port_msgcount_t glimit);

DESCRIPTION

The mach_port_set_glimit function changes the queue limit @fsKs receive
right namedname Valid values forglimit are between zero and MACH_-
PORT_QLIMIT_MAX (defined inmach.h), inclusive.

PARAMETERS

task
[in scalar] The task owning the receive right.

name
[in scalar]tasks name for the receive right.

glimit
[in scalar] The number of messages which may be queued to this port
without causing the sender to block.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a receive right.

KERN_INVALID_VALUE
glimit was invalid.

Mach 3 Kernel Interfaces 63

Port Manipulation Interface

RELATED INFORMATION
Functionsmach_port_get receive_statusnach_port_set_mscount

64 Mach 3 Kernel Interfaces

mach_port_set_seqno

mach_port_set_seqgno

Function — Changes the sequence number of a port

SYNOPSIS
kern_return_tnach_port_set_seqno
(mach_port_t task,
mach_port_t name,
mach_port_seqno _t seqno)

DESCRIPTION

The mach_port_set_seqgndunction changes the sequence numbensks re-
ceive right namedame

PARAMETERS

task
[in scalar] The task owning the receive right.

name
[in scalar]tasks name for the receive right.

seqno

[in scalar] The sequence number that the next message received from
the port will have.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a receive right.

RELATED INFORMATION
Functionsmach_port_get receive_status

Mach 3 Kernel Interfaces 65

Port Manipulation Interface

mach_port_type

Function — Return information about a task’s port name

SYNOPSIS
kern_return_tnach_port_type
(mach_port_t task,
mach_port_t name,
mach_port_type_t* ptype)

DESCRIPTION

Themach_port_type function returns information abotaskKs rights for a spe-
cific name in its port name space. The returpggbeis a bit-mask indicating
what rightstask holds with this name. The bit-mask is composed of the follow-
ing bits:

MACH_PORT_TYPE_SEND
The name denotes a send right.

MACH_PORT_TYPE_RECEIVE
The name denotes a receive right.

MACH_PORT_TYPE_SEND_ONCE
The name denotes a send-once right.

MACH_PORT_TYPE_PORT_SET
The name denotes a port set.

MACH_PORT_TYPE_DEAD NAME
The name is a dead name.

MACH_PORT_TYPE_DNREQUEST
A dead-name request has been registered for the right.

MACH_PORT_TYPE_MAREQUEST
A msg-accepted request for the right is pending. (Note: This feature is
planned for deletion.)

MACH_PORT_TYPE_COMPAT
The port right was created in the compatibility mode.

PARAMETERS

task
[in scalar] The task whose port name space is queried. |

66 Mach 3 Kernel Interfaces

mach_port_type

name
[in scalar] The name being queried.

ptype
[out scalar] The type of the name. Indicates what kind of right the task
holds for the port, port set, or dead name.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID TASK
taskwas invalid.

KERN_INVALID_NAME
namedid not denote a right.

RELATED INFORMATION

Functions:mach_port_names mach_port_get _receive_statysmach_port_-
get_set_status

Mach 3 Kernel Interfaces 67

Port Manipulation Interface

mach_ports_lookup

Function — Returns an array of well-known system ports.

SYNOPSIS
kern_return_tnach_ports_lookup
(mach_port_t target_task,
mach_port_array_t* init_port_set,
mach_msg_type_number_t* init_port_count)

DESCRIPTION

The mach_ports_lookup function returns an array of the well-known system
ports that are currently registered for the specified task. Note that the task holds
only send rights for the ports.

Registered ports are those ports that are used by the run-time system to initialize

a task. To register system ports for a task, usamieh ports_registerfunc-
tion.

PARAMETERS

target_task
[in scalar] The task whose currently registered ports are to be returnepl.

init_port_set
[out pointer to dynamic array ehach_port It The returned array of |
ports.

init_port_count
[out scalar] The number of ports in the array.

RETURN VALUE

KERN_SUCCESS
The array of registered ports has been returned.

RELATED INFORMATION

Functionsmach_ports_register

68 Mach 3 Kernel Interfaces

mach_ports_register

mach_ports_register

Function — Registers an array of well-known system ports

SYNOPSIS
kern_return_tnach_ports_register
(mach_port_t target_task,
mach_port_array t init_port_set,
mach_msg_type _number _t init_port_array_count)

DESCRIPTION

The mach_ports_register function registers an array of well-known system
ports for the specified task. The task holds only send rights for the registered
ports. The valid well-known system ports are:

The port for the Network Name Server.
The port for the Environment Manager.
The port for the Service server.

Each port must be placed in a specific slot in the array. The slot numbers are de-
fined (inmach.h) by the global constants NAME_SERVER_SLOT, ENVIRON-
MENT_SLOT, and SERVICE_SLOT.

A task can retrieve the currently registered ports by usinméoh_ports_look-
up function.

PARAMETERS

target_task
[in scalar] The task for which the ports are to be registered.

init_port_set
[in pointer to array ofmach_port Jt The array of ports to register.

init_port_array_count
[in scalar] The number of ports in the array. Note that while this is a
variable, the kernel accepts only a limited number of ports. The maxi-
mum number of ports is defined by the global constant MACH_-
PORT_SLOTS_USED.

NOTES

When a new task is created (wittsk_creatd, the child task can inherit the par-
ent’s registered ports. Note that child tasks do not automatically acquire rights
to these ports. They must usech_ports_lookupto get them. It is intended

Mach 3 Kernel Interfaces 69

Port Manipulation Interface

that port registration be used only for task initialization, and then only by run-
time support modules.

A parent task has three choices when passing registered ports to child tasks:
The parent task can do nothing. In this case, all child tasks inherit access to
the same ports that the parent has.

The parent task can usgach_ports_registerto modify its set of registered

ports before creating child tasks. In this case, the child tasks get access to the
modified set of ports. After creating its child tasks. the parent can use
mach_ports_registeragain to reset its registered ports.

The parent task can first create a specific child task and themacde -
ports_register to modify the child’s inherited set of ports, before starting the
child’s thread(s). The parent must specify the child’s task port, rather than its
own, on the call tonach_ports_register

Tasks other than the Network Name Server and the Environment Manager
should not need access to the Service port. The Network Name Server port is
the same for all tasks on a given machine. The Environment port is the only port
likely to have different values for different tasks.

Registered ports are restricted to those ports that are used by the run-time sys-
tem to initialize a task. A parent task can pass other ports to its child tasks
through:

An initial message (se@ach_msg.
The Network Name Server, for public ports.
The Environment Manager, for private ports.

RETURN VALUE

KERN_SUCCESS
The ports have been registered for the task.

KERN_INVALID_ARGUMENT
The number of ports exceeds the allowed maximum.

RELATED INFORMATION
Functionsmach_msg mach_ports_lookup

70 Mach 3 Kernel Interfaces

mach_reply_port

mach_reply_port

SystemTrap— Creates a port for the task

LIBRARY
#include smach/mach_traps.t»

SYNOPSIS

mach_port_tnach_reply_port
0;

DESCRIPTION

The mach_reply_port function creates a new port for the current task and re-
turns the name assigned by the kernel. The kernel records the name in the task’s
port name space and grants the task receive rights for the port. The new port is
not a member of any port set.

This function is an optimized version ofach_port_allocatethat uses no port
references. Its main purpose is to allocate a reply port for the task when the task
is starting— namely, before it has any ports to use as reply ports for any IPC
based system functions.

PARAMETERS
None

CAUTIONS

Although the created port can be used for any purpose, the implementation may
optimize its use as a reply port.

RETURN VALUE

MACH_PORT_NULL
No port was allocated. Any other value indicates success.

RELATED INFORMATION

Functionsmach_port_allocate

Mach 3 Kernel Interfaces 71

Port Manipulation Interface

72 Mach 3 Kernel Interfaces

cuarter 4 Virtual Memory Interface

This chapter discusses the specifics of the kernel’s virtual memory interfaces. This in-
cludes memory status related functions associated with a single task. Functions that are

related to, or used by, external memory managers (pagers) are described in the next chap-
ter.

Mach 3 Kernel Interfaces 73

Virtual Memory Interface

vm_allocate

Function — Allocates a region of virtual memory

SYNOPSIS
kern_return_tvm_allocate
(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
boolean_t anywhere)

DESCRIPTION

The vm_allocate function allocates a region of virtual memory in the specified
task’s address space. A new region is always zero filled. The physical memory
is not allocated until an executing thread references the new virtual memory.

If anywhereis true, the returnedddresswill be at a page boundary asize

will be rounded up to an integral number of pages. Otherwise, the region starts
at the beginning of the virtual page containatgiressit ends at the end of the
virtual page containingddress+ size- 1. Because of this rounding to virtual
page boundaries, the amount of memory allocated may be greatsizih&sse
vm_statisticsto find the current virtual page size.

Use themach_task_selffunction to return the caller's value foarget_ task
This macro returns the task kernel port for the caller.

Initially, there are no access restrictions on any of the pages of the newly allocat-
ed region. Child tasks inherit the new region as a copy.

To establish different protections for the new region, usevtheprotect and
vm_inherit functions.

PARAMETERS

target_task
[in scalar] The task in whose address space the region is to be allocajed.

address
[pointer to in/out scalar] The starting address for the region. If there is
not enough room following the address, the kernel does not allocate
the region. The kernel returns the starting address actually used for the
allocated region.

size
[in scalar] The number of bytes to allocate. |

74 Mach 3 Kernel Interfaces

vm_allocate

anywhere
[in scalar] Placement indicator. If false, the kernel allocates the region
starting ataddress If true, the kernel allocates the region wherever
enough space is available within the address space. The kernel returns
the starting address actually usecddress

NOTES

For languages other than C, use W#me_statistics and mach_task_selffunc-
tions to return the task’s kernel port (farget_task

A region is a continuous range of addresses bounded by a start address and an
end address. Regions consist of pages that have different protection or inherit-
ance characteristics.

A task’s address space can contain both explicitly allocated memory and auto-
matically allocated memory. Them_allocate function explicitly allocates
memory. The kernel automatically allocates memory to hold out-of-line data
passed in a message (and received mitich_msg. The kernel allocates mem-

ory for the passed data as an integral number of pages.

RETURN VALUE

KERN_SUCCESS
The new region has been allocated.

KERN_INVALID_ADDRESS
The specified address is illegal.

KERN_NO_SPACE

There is not enough space in the task’s address space to allocate the
new region.

RELATED INFORMATION

Functions: task_get_special_port vm_deallocate vm_inherit, vm_protect,
vm_region, vm_statistics

Mach 3 Kernel Interfaces 75

Virtual Memory Interface

vm_copy

Function — Copies a region in a task’s virtual memory

SYNOPSIS
kern_return_tvm_copy
(mach_port_t target_task,
vm_address_t source_address
vm_size_t count,
vm_address_t dest_address)

DESCRIPTION

The vm_copy function copies a source region to a destination region within a
task’s virtual memory. It is equivalent ton_read followed byvm_write. The
destination region can overlap the source region.

The destination region must already be allocated. The source region must be
readable, and the destination region must be writable.

PARAMETERS

target_task
[in scalar] The task whose memory is to be copied. |

source_address
[in scalar] The starting address for the source region. The address njust
be on a page boundary.

count
[in scalar] The number of bytes in the source region. The number pf
bytes must convert to an integral number of virtual pages.

dest_address
[in scalar] The starting address for the destination region. The addrgss
must be on a page boundary.

RETURN VALUE

KERN_SUCCESS
The memory region has been copied.

KERN_INVALID_ARGUMENT
Either an address does not start on a page boundary or the count does
not convert to an integral number of pages.

76 Mach 3 Kernel Interfaces

vm_copy

KERN_PROTECTION_FAILURE

The source region is protected against reading, or the destination re-
gion is protected against writing.

KERN_INVALID_ADDRESS

An address is illegal or specifies a non-allocated region, or there is not
enough memory following one of the addresses.

RELATED INFORMATION

Functionsvm_protect, vm_read, vm_write, vm_statistics

Mach 3 Kernel Interfaces

77

Virtual Memory Interface

vm_deallocate

Function — De-allocates a region of virtual memory

SYNOPSIS
kern_return_tvm_deallocate
(mach_port_t target_task,
vm_address_t address,
vm_size_t size)

DESCRIPTION

Thevm_deallocatefunction de-allocates a region of virtual memory in the spec-
ified task’s address space.

The region starts at the beginning of the virtual page conta@mdessit ends

at the end of the virtual page containiaddress+ size- 1. Because of this
rounding to virtual page boundaries, the amount of memory de-allocated may
be greater thasize Usevm_statisticsto find the current virtual page size.

vm_deallocatecan be used to de-allocate memory passed as out-of-line data in
a message.

vm_deallocateaffects onlytarget task Other tasks that have access to the de-
allocated memory can continue to reference it.

PARAMETERS

target_task
[in scalar] The task in whose address space the region is to be de-glo-

cated.
address

[in scalar] The starting address for the region. |
size

[in scalar] The number of bytes to de-allocate. |

RETURN VALUE

KERN_SUCCESS
The region has been de-allocated.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

78 Mach 3 Kernel Interfaces

vm_deallocate

RELATED INFORMATION
Functionsmach_msgvm_allocate vm_statistics

Mach 3 Kernel Interfaces

79

Virtual Memory Interface

vm_inherit

Function — Sets the inheritance attribute for a region of virtual memory

SYNOPSIS
kern_return_vm_inherit
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_inherit_t new_inheritance)

DESCRIPTION

The vm_inherit function sets the inheritance attribute for a region within the
specified task’s address space. The inheritance attribute determines the type of

access established for child tasks at task creation

Because inheritance applies to virtual pages, the speeifiéssand sizeare

rounded to page boundaries, as follows: the region starts at the beginning of the
virtual page containingddressit ends at the end of the virtual page containing
address+ size- 1. Because of this rounding to virtual page boundaries, the

amount of memory affected may be greater thiae Usevm_statisticsto find
the current virtual page size.

A parent and a child task can share the same physical memory only if the inher-
itance for the memory is set to VM_INHERIT_SHARE before the child task is
created. This is the only way that two tasks can share memory (other than

through the use of an external memory managenmeenap).

Note that all the threads within a task share the task’'s memory.

PARAMETERS

target_task
[in scalar] The task whose address space contains the region.

address
[in scalar] The starting address for the region.

size
[in scalar] The number of bytes in the region.

new_inheritance

[in scalar] The new inheritance attribute for the region. Valid values arp:

VM_INHERIT_SHARE
Allows child tasks to share the region.

80 Mach 3 Kernel Interfaces

vm_inherit

VM_INHERIT_COPY
Gives child tasks a copy of the region.

VM_INHERIT_NONE
Provides no access to the region for child tasks.

RETURN VALUE

KERN_SUCCESS
The new inheritance has been set for the region.

KERN_INVALID_ADDRESS

The address is illegal or specifies a non-allocated region.

RELATED INFORMATION

Functionstask_create vm_map, vm_region.

Mach 3 Kernel Interfaces

81

Virtual Memory Interface

vm_machine_attribute

Function — Sets and gets special attributes of a memory region

SYNOPSIS
kern_return_tym_machine_attribute
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_machine_attribute_t attribute,
vm_machine_attribute_val_t* value)

DESCRIPTION

The vm_machine_attribute function gets and sets special attributes of the
memory region implemented by the implementations underiymgp module.
These attributes are properties such as cachability, migrability and replicability.
The behavior of this function is machine dependent.

PARAMETERS

target_task
[in scalar] The task in whose address space the memory object is to be
manipulated.

address
[in scalar] The starting address for the memory region. The granularfy
of rounding of this value to page boundaries is implementation depen-

dent.
size
[in scalar] The number of bytes in the region. The granularity of roung-
ing of this value to page boundaries is implementation dependent.
attribute

[in scalar] The name of the attribute to be get/set. Possible values are}

MATTR_CACHE
Cachability

MATTR_MIGRATE
Migratability

MATTR_REPLICATE
Replicability

82 Mach 3 Kernel Interfaces

vm_machine_attribute

value
[pointer to in/out scalar] The new value for the attribute. The old value
is also returned in this variable.

MATTR_VAL_OFF
(generic) turn attribute off

MATTR_VAL_ON
(generic) turn attribute on

MATTR_VAL_GET
(generic) return current value

MATTR_VAL_CACHE_FLUSH
flush from all caches

MATTR_VAL_DCACHE_FLUSH
flush from data caches

MATTR_VAL_ICACHE_FLUSH
flush from instruction caches

RETURN VALUE

KERN_SUCCESS
The memory object has been modified.

KERN_INVALID_ARGUMENT
An illegal argument was specified.

Mach 3 Kernel Interfaces 83

Virtual Memory Interface

vm_map

Function — Maps a memory object to a task’s address space

SYNOPSIS

kern_return_tvm_map
(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
vm_address_t mask,
boolean_t anywhere,
mach_port_t memory_object,
vm_offset_t offset,
boolean_t copy,
vm_prot_t cur_protection,
vm_prot_t max_protection,
vm_inherit_t inheritance;

DESCRIPTION

The vm_map function maps a portion of the specified memory object into the
virtual address space belongingaoget task The target task can be the calling
task or another task, identified by its task kernel port.

The portion of the memory object mapped is determinedffsgtandsize The
kernel mapsaddressto the offset, so that an access to the memory starts at the
offset in the object.

The maskparameter specifies additional alignment restrictions on the kernel's
selection of the starting address. Uses for this mask include:

Forcing the memory address alignment for a mapping to be the same as the
alignment within the memory object.

Quickly finding the beginning of an allocated region by performing bit arith-
metic on an address known to be in the region.

Emulating a larger virtual page size.

The cur_protection max_protectionandinheritanceparameters set the protec-

tion and inheritance attributes for the mapped object. As a rule, at least the maxi-
mum protection should be specified so that a server can make a restricted (for
example, read-only) mapping in a client atomically. The current protection and
inheritance parameters are provided for convenience so that the caller does not
have to calvm_inherit andvm_protect separately.

The same memory object can be mapped in more than once and by more than
one task. If an object is mapped by multiple tasks, the kernel maintains consis-
tency for all the mappings if they use the same page alignmeoif§etand are

84

Mach 3 Kernel Interfaces

vm_map

on the same host. In this case, the virtual memory to which the object is mapped
is shared by all the tasks. Changes made by one task in its address space are visi-
ble to all the other tasks.

PARAMETERS

target_task
[in scalar] The task to whose address space the memory object is to be
mapped.

address
[pointer to in/out scalar] The starting address for the mapped object. If
the address is not at the beginning of a virtual page, the kernel rounds
it up to the next page boundary. If there is not enough room following
the address, the kernel does not map the object. The kernel returns the
starting address actually used for the mapped object.

size
[in scalar] The number of bytes to allocate for the object. The kernel
rounds this number up to an integral number of virtual pages.

mask
[in scalar] Alignment restrictions for starting address. Bits turned on in
the mask cannot be turned on in the starting address.

anywhere

[in scalar] Placement indicator. If false, the kernel allocates the object’s
region starting atddress If true, the kernel allocates the region any-
where at or followingaddressthat there is enough space available with-

in the address space. The kernel returns the starting address actually
used inaddress

memory_object
[in scalar] The port naming the abstract memory object. If MEMORY _-
OBJECT_NULL is specified, the kernel allocates zero-filled memory,
as withvm_allocate

offset
[in scalar] An offset within the memory object, in bytes. The kernel
mapsaddresgo the specified offset.

copy
[in scalar] Copy indicator. If true, the kernel copies the region for the

memory object to the specified task’s address space. If false, the region
is mapped read-write.

cur_protection
[in scalar] The initial current protection for the region. Valid values are
obtained by or'ing together the following values:

Mach 3 Kernel Interfaces 85

Virtual Memory Interface

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

max_protection
[in scalar] The maximum protection for the region. Values are the sarpe
as forcur_protection

inheritance
[in scalar] The initial inheritance attribute for the region. Valid valueg
are:

VM_INHERIT_SHARE
Allows child tasks to share the region.

VM_INHERIT_COPY
Gives child tasks a copy of the region.

VM_INHERIT_NONE
Provides no access to the region for child tasks.

NOTES

vm_map allocates a region in a task’s address space and maps the specified
memory object to this regiorvm_allocate allocates a zero-filled region in a
task’s address space.

Before a memory object can be mapped, a port naming it must be acquired from
the memory manager serving it.

The kernel rounds the starting address up to the next page boundary. Note that
this is different fromvm_allocate in which the starting address is rounded
down to the previous page boundary.

CAUTIONS

Do not attempt to map a memory object unless it has been provided by a memo-
ry manager that implements the memory object interface. If another type of port
is specified, a thread that accesses the mapped virtual memory may become per-
manently hung or may receive a memory exception.

86 Mach 3 Kernel Interfaces

vm_map

RETURN VALUE

KERN_SUCCESS
The memory object has been mapped.

KERN_NO_SPACE
There is not enough space in the task's address space to allocate the
new region for the memory object.

KERN_INVALID_ARGUMENT
An illegal argument was specified.

RELATED INFORMATION

Functionsmemory_object_init, et al.,vm_allocate

Mach 3 Kernel Interfaces 87

Virtual Memory Interface

vm_protect

Function — Sets access privileges for a region of virtual memory

SYNOPSIS

kern_return_tm_protect
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
boolean_t set_maximum,
vm_prot_t new_protectiory)

DESCRIPTION

Thevm_protect function sets access privileges for a region within the specified
task’s address spaagew_protectiorspecifies a combination of read, write, and
execute accesses that are allowed (rather than prohibited).

The region starts at the beginning of the virtual page contaaddgessit ends

at the end of the virtual page containiagdress+ size- 1. Because of this
rounding to virtual page boundaries, the amount of memory protected may be
greater tharsize Usevm_statisticsto find the current virtual page size.

The enforcement of virtual memory protection is machine-dependent. Nominal-
ly read access requires VM_PROT_READ permission, write access requires
VM_PROT_WRITE permission, and execute access requires VM_PROT_EXE-
CUTE permission. However, some combinations of access rights may not be
supported. In particular, the kernel interface allows write access to require VM_-
PROT_READ and VM_PROT_WRITE permission and execute access to re-
quire VM_PROT_READ permission.

PARAMETERS

target_task

[in scalar] The task whose address space contains the region. |
address

[in scalar] The starting address for the region. |
size

[in scalar] The number of bytes in the region. |

set_maximum
[in scalar] Maximum/current indicator. If true, the new protection setp
the maximum protection for the region. If false, the new protection sets
the current protection for the region. If the maximum protection is set

88

Mach 3 Kernel Interfaces

vm_protect

below the current protection, the current protection is reset to the new
maximum.

new_protection
[in scalar] The new protection for the region. Valid values are obtained

by or’'ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE

KERN_SUCCESS
The new protection has been set for the region.

KERN_PROTECTION_FAILURE
The new protection increased the current or maximum protection be-

yond the existing maximum protection.

KERN_INVALID_ADDRESS
The address is illegal or specifies a nhon-allocated region.

RELATED INFORMATION
Functionsvm_inherit, vm_region.

89

Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_read

Function — Reads a task’s virtual memory

SYNOPSIS
kern_return_tvm_read
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_offset_t* data, |
mach_msg_type_number_t* data_count)

DESCRIPTION

Thevm_read function reads a portion of a task’s virtual memory. It allows one
task to read another task’'s memory.

PARAMETERS

target_task
[in scalar] The task whose memory is to be read. |

address
[in scalar] The address at which to start the read. This address mjst

name a page boundary.

size
[in scalar] The number of bytes to read. |

data
[out pointer to dynamic array of bytes] The array of data returned by
the read.

data_count
[out scalar] The number of bytes in the returned array. The count con-
verts to an integral number of pages.

RETURN VALUE |

KERN_SUCCESS
The memory has been read.

KERN_INVALID_ARGUMENT
Either the address does not start on a page boundary or the size does

not convert to an integral number of pages.

90 Mach 3 Kernel Interfaces

vm_read

KERN_NO_SPACE

There is not enough room in the calling task’s address space to allocate
the region for the returned data.

KERN_PROTECTION_FAILURE
The specified region in the target task is protected against reading.

KERN_INVALID_ADDRESS

The address is illegal or specifies a non-allocated region, or there are
less tharsizebytes of data following the address.

RELATED INFORMATION

Functionsvm_copy, vm_deallocate vm_write.

Mach 3 Kernel Interfaces

91

Virtual Memory Interface

vm_region

Function — Returns information on a region of virtual memory

SYNOPSIS

kern_return_vm_region
(mach_port_t target_task,
vm_address_t* address,
vm_size_t* size,
vm_prot_t* protection,
vm_prot_t* max_protection,
vm_inherit_t* inheritance,
boolean_t* shared,
mach_port_t* object_name,
vm_offset_t* offset)

DESCRIPTION

The vm_region function returns information on a region within the specified
task’s address space.

The function begins looking addressand continues until it finds an allocated
region. If the input address is within a region, the function uses the start of that
region. The starting address for the located region is returregttiless

PARAMETERS

target_task
[in scalar] The task whose address space contains the region. |

address
[pointer to in/out scalar] The address at which to start looking for a re-
gion. The function returns the starting address actually used.

size
[out scalar] The number of bytes in the located region. The number
converts to an integral number of virtual pages.

protection

[out scalar] The current protection for the region.

max_protection
[out scalar] The maximum protection allowed for the region.

inheritance
[out scalar] The inheritance attribute for the region.

92

Mach 3 Kernel Interfaces

vm_region

shared

[out scalar] Shared indicator. If true, the region is shared by another
task. If false, the region is not shared.

object_name

[out scalar] The name of a send right to the name port for the memory
object associated with the region. $eemory_object _init.

offset

[out scalar] The region’s offset into the memory object. The region be-
gins at this offset.

RETURN VALUE

KERN_SUCCESS

A region has been located and its information returned.
KERN_NO_SPACE

There is no region at or beyond the specified starting address.

RELATED INFORMATION

Functions:vm_allocate vm_deallocate vm_inherit, vm_protect, memory_-
object_init, et al.

Mach 3 Kernel Interfaces

93

Virtual Memory Interface

vm_ statistics

Function — Returns statistics on the kernel's use of virtual memory

SYNOPSIS
kern_return_tvm_ statistics
(mach_port_t target_task,
vm_statistics_data_t* vm_stats)

DESCRIPTION

Thevm_statisticsfunction returns statistics on the kernel's use of virtual memo-
ry from the time the kernel was booted.

Seevm_statisticsfor a description of the structure used.

For related information for a specific task, tesk_info.

PARAMETERS

target_task
[in scalar] The task that is requesting the statistics. |

vm_stats
[out structure] The structure in which the statistics will be returned.

RETURN VALUE

KERN_SUCCESS
The statistics have been returned.

KERN_INVALID HOST
The host is null.

KERN_RESOURCE_SHORTAGE
The kernel could not allocate sufficient memory.

RELATED INFORMATION

Functionstask_info.

Data Structuresim_statistics

94 Mach 3 Kernel Interfaces

vm_wire

vm_wire

Function — Specifies the pageability of a region of virtual memory

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_vm_wire
(mach_port_t host_priy
mach_port_t target_task,
vm_address_t address,
vm_size t size,
vm_prot_t wired_access)

DESCRIPTION

The vm_wire function sets the pageability privileges for a region within the
specified task’s address spaasgred accesspecifies an access attribute which
is interpreted to specify whether the region can be paged.

The region starts at the beginning of the virtual page contaadgessit ends

at the end of the virtual page containiagdress+ size- 1. Because of this
rounding to virtual page boundaries, the amount of memory affected may be
greater tharsize Usevm_statisticsto find the current virtual page size.

This call is directed to the privileged host port on whanget _taskexecutes be-
cause of the privileged nature of committing physical memory.

PARAMETERS

host_priv
[in scalar] The host control port for the host on whigtget_taskexe-
cutes.

target_task
[in scalar] The task whose address space contains the region.

address
[in scalar] The starting address for the region.

size
[in scalar] The number of bytes in the region.

wired_access
[in scalar] The pageability of the region. Valid values are:

Mach 3 Kernel Interfaces 95

Virtual Memory Interface

VM_PROT_NONE
Un-wire (allow to be paged) the region of memory.

Any other value specifies that the region is to be wired and that the tar-
get task must have at least the specified amount of access to the region.

RETURN VALUE

KERN_SUCCESS
The new pageability has been set for the region.

KERN_INVALID_HOST
The privileged host port was not specified.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

KERN_INVALID_VALUE
An invalid value forwired_accessvas specified.

RELATED INFORMATION
Functionsthread_wire.

96 Mach 3 Kernel Interfaces

vm_write

vm_write

Function — Writes data to a task’s virtual memory

SYNOPSIS
kern_return_vm_write
(mach_port_t target_task,
vm_address_t address,
vm_offset t data,
mach_msg_type _number _t data_count)

DESCRIPTION

Thevm_write function writes an array of data to a task’s virtual memory. It al-
lows one task to write to another task’s memory.

Usevm_statisticsto find the current virtual page size.

PARAMETERS

target_task
[in scalar] The task whose memory is to be written.

address
[in scalar] The address at which to start the write. The starting address

must be on a page boundary.

data
[in pointer to page aligned array of bytes] An array of data to be writ-
ten.

data_count
[in scalar] The number of bytes in the array. The size of the array must
convert to an integral number of pages.

RETURN VALUE

KERN_SUCCESS
The memory has been written.

KERN_INVALID_ARGUMENT
Either the address does not start on a page boundatgtarcount
does not convert to an integral number of pages.

KERN_PROTECTION_FAILURE
The specified region in the target task is protected against writing.

Mach 3 Kernel Interfaces 97

Virtual Memory Interface

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region, or there are
less thardata_countytes available following the address.

RELATED INFORMATION

Functionsvm_copy, vm_protect, vm_read, vm_statistics

98 Mach 3 Kernel Interfaces

CHAPTER 5 External Memory
Management Interface

This chapter discusses the specifics of the kernel's external memory management inter-
faces. Interfaces that relate to the basic use of virtual memory for a task appear in the pre-
vious chapter.

Mach 3 Kernel Interfaces 99

External Memory Management Interface

default_pager_info

Function —Return default partition information

LIBRARY

libmach.a only

#include smach/default_pager_object.t»

SYNOPSIS
kern_return_tlefault_pager_info
(mach_port_t pager,
vm_size_t* total,
vm_size t* free)

DESCRIPTION

The default_pager_info function returns information concerning the default
pager’s default paging partition.

The default memory manager port can be obtained by calimget default_-

memory_managerwith the host control port, specifying the “new” pager port
as MACH_PORT_NULL.

PARAMETERS

pager
[in scalar] A port to the default memory manager. |

total
[out scalar] Total size of the default partition.

free
[out scalar] Free space in the default partition.

RETURN VALUE

KERN_SUCCESS
Information returned.

RELATED INFORMATION

Functionsvm_set_default_memory_manager

100 Mach 3 Kernel Interfaces

default_pager_object_create

default_pager_object_create

Function — Create a memory object managed by the default pager

LIBRARY
libmach.a only

#include smach/default_pager_object.tr

SYNOPSIS
kern_return_tlefault_pager_object create
(mach_port_t pager,
memory_object_t* memory_obiject,
vm_size t object_size)

DESCRIPTION

Thedefault_pager_object_createfunction returns an object, backed by the de-
fault pager, which is suitable for use with_map. This memory object has the
same properties as does a memory object provideghbllocate its initial
contents are zero and the backing contents are temporary in that they do not per-
sist after the memory object is destroyed. The memory object is suitable for use
as non-permanent shared memory.

The default memory manager port can be obtained by caiimget default_-

memory_managerwith the host control port, specifying the “new” pager port
as MACH_PORT_NULL.

PARAMETERS

pager
[in scalar] A port to the default memory manager.

memory_object
[out scalar] The abstract memory object port for the memory object.

object_size
[in scalar] The maximum size for the memory object.

RETURN VALUE

KERN_SUCCESS
Memory object created.

Mach 3 Kernel Interfaces 101

External Memory Management Interface

RELATED INFORMATION

Functionsvm_map, vm_set_default_memory_manager

102 Mach 3 Kernel Interfaces

memory_object_change_attributes

memory_object_change_attributes

Function — Changes various performance related attributes

SYNOPSIS
kern_return_tnemory_object_change_attributes
(mach_port_t memory_control,
boolean_t may_cache_object,
memory_object_copy_strategy t copy_strategy,
mach_port_t reply_to;

DESCRIPTION

The memory_object_change_attributesfunction sets various performance-re-
lated attributes for the specified memory object, so as to:

Retain data from a memory object even after all address space mappings
have been de-allocatechfly cache_ objegarameter).

Perform optimizations for virtual memory copy operationspfy_strategy
parameter).

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object's
data. Normally, the kernel requests each page with read ac-
cess, copies the data, and then (optionally) flushes the data.

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (vilmemory_object _copy be-
fore copying any data.

Mach 3 Kernel Interfaces 103

External Memory Management Interface

MEMORY_OBJECT _COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memo
object is removed, the object is destroyed without returnin
any in-memory pages.

reply_port
[in scalar] A port to which a replyr(emory_object_change_complet- |

ed) is to be sent indicating the completion of the attribute change. Such
a reply would be useful if the cache attribute is turned off, since such a
change, if the memory object is no longer mapped, may result in the
object being terminated, or if the copy strategy is changed, which may
result in additional page requests.

NOTES

Sharing cached data among all the clients of a memory object can have a major

impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-

gram images can be used regularly by different programs. By retaining the data

for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functions:memory_object_change completednemory_object_copy mem-
ory_object_get_attributes memory_object_ready memory_object_set_at-
tributes (old form).

104 Mach 3 Kernel Interfaces

memory_object_change_completed

memory_object_change_completed

Server Interface — Indicates completion of an attribute change call

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_change completed
(mach_port_t memory_obiject,
boolean_t may_cache_object,
memory_object_copy_strategy t copy_strategy

DESCRIPTION

A memory_object_change completefunction is called as the result of a ker-
nel message confirming the kernel's action in response moemory ob-
ject_change_attributeall from the memory manager.

When the kernel completes the requested changes, it waisory ob-
ject_change_completedasynchronously) using the port explicitly provided in

the memory_object_change_attributescall. A response is generated so that
the manager can synchronize with changes to the copy strategy (which affects
the manner in which pages will be requested) and a termination message possi-
bly resulting from un-cacheing a not-mapped object.

SEQUENCE NUMBER FORM

seqnos_memory_object_change_completed
kern_return_seqnos_memory_object_change completed

(mach_port_t memory_obiject,
mach_port_seqno_t segne
boolean_t may_cache_object,
memory_object_copy_strategy t copy_strategy

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel inva_map call.

segno
[in scalar] The sequence number of this message relative to the port
named in thenemory_object_change_attributescall.

Mach 3 Kernel Interfaces 105

External Memory Management Interface

may_cache_object
[in scalar] The new cache attribute. |

copy_strategy
[in scalar] The new copy strategy. |

NOTES

No memory cache control port is supplied in this call because the attribute
change may cause termination of the object leading to what would be an invalid
cache port.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions: memory_object_change_attributes memory_object_server se-
gnos_memory_object_server

106 Mach 3 Kernel Interfaces

memory_object_copy

memory_object_copy

Server Interface — Indicates that a memory object has been copied

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_copy
(mach_port_t old_memory_object,
memory_object_control_t old_memory_control,
vm_offset_t offset,
vm_size t length,
mach_port_t new_memory_objext

DESCRIPTION

A memory_object_copyfunction is called as the result of a message from the
kernel indicating that the kernel has copied the specified region within the old
memory object.

This call includes only the new abstract memory object port itself. The kernel
will subsequently issue memory_object _init call on the new abstract memory
object after it has prepared the currently cached pages of the old object. When
the memory manager receives themory_object_init call, it is expected to re-

ply with thememory_object _readycall. The kernel uses the new abstract mem-
ory object, memory cache control, and memory cache name ports to refer to the
new copy.

The kernel makes thmemory_object_copycall only if:

The memory manager had previously set the old object’s copy strategy at-
tribute to MEMORY_OBJECT _COPY_CALL (usingmemory ob-
ject_change_attributesor memory_object _ready.

A user of the old object has asked the kernel to copy it.

Cached pages from the old memory object at the time of the copy are handled
as follows:

Readable pages may be copied to the new object without notification and
with all access permissions.
Pages not copied are locked to prevent write access.

The memory manager should treat the new memory object as temporary. In oth-
er words, the memory manager should not change the new object’s contents or
allow it to be mapped in another client. The memory manager can useihe

Mach 3 Kernel Interfaces 107

External Memory Management Interface

ory_object_data_unavailablecall to indicate that the appropriate pages of the
old object can be used to fulfill a data request.

SEQUENCE NUMBER FORM

seqnos_memory_object_copy
kern_return_steqnos_memory_object_copy

(mach_port_t old_memory_object,
mach_port_seqno_t segnoQ
memory_object_control_t old_memory_control,
vm_offset_t offset,
vm_size_t length,
mach_port_t new_memory_objext

PARAMETERS

old_memory_object
[in scalar] The port that represents the old (copied from) abstract men-

ory object.

segno
[in scalar] The sequence number of this message relative to the abstjact
memory object port.

old_memory_control
[in scalar] The kernel memory cache control port for the old memoily

object.

offset
[in scalar] The offset within the old memory object. |

length
[in scalar] The number of bytes copied, startingféget The number |
converts to an integral number of virtual pages.

new_memory_object
[in scalar] The new abstract memory object created by the kernel. The
kernel provides all port rights (including the receive right) for the new
memory object.

NOTES

It is possible for a memory manager to receivaeanory object data_return
message for a page of the new memory object before receiving any other re-
guests for that data.

108 Mach 3 Kernel Interfaces

memory_object_copy

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions: memory_object_change_attributes memory_object_da-
ta_unavailable, memory_object_init, memory_object_ready memory_ob-
ject_server, seqnos_memory_object_server

Mach 3 Kernel Interfaces 109

External Memory Management Interface

memory_object_create

Server Interface — Requests transfer of responsibility for a kernel-created
memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_create
(mach_port_t old_memory_object,
mach_port_t new_memory_object,
vm_size t new_object_size,
mach_port_t new_control,
mach_port_t new_name,
vm_size t new_page_sije

DESCRIPTION

A memory_object_createfunction is called as the result of a message from the
kernel requesting that the default memory manager accept responsibility for the
new memory object created by the kernel. The kernel makes this call only to the
system default memory manager.

The new memory object initially consists of zero-filled pages. Only memory
pages that are actually written are provided to the memory manager. When pro-
cessingnemory_object_data_requestalls from the kernel, the default memo-

ry manager must usmemory object data unavailablefor any pages that
have not been written previously.

The kernel does not expect a reply to this call. The kernel assumes that the de-
fault memory manager will be ready to handle data requests to this object and
does not need the confirmation ahamory_object_readycall.

SEQUENCE NUMBER FORM

seqnos_memory_object_create
kern_return_steqnos_memory_object_create

(mach_port_t old_memory_object,
mach_port_seqno_t segnoQ
mach_port_t new_memory_object,
vm_size t new_object_size,
mach_port_t new_control,
mach_port_t new_name,
vm_size t new_page_sije

110 Mach 3 Kernel Interfaces

memory_object_create

PARAMETERS

old_memory_object
[in scalar] An existing abstract memory object provided by the default
memory manager.

seqno
[in scalar] The sequence number of this message relative to the old ab-
stract memory object port.

new_memory_object
[in scalar] The port representing the new abstract memory object creat-
ed by the kernel. The kernel provides all port rights (including the re-
ceive right) for the new memory object.

new_object_size
[in scalar] The maximum size for the new object, in bytes.

new_control
[in scalar] The memory cache port to be used by the memory manager
when making cache management requests for the new object.

new_name
[in scalar] The memory cache name port used by the kernel to refer to
the new memory object data in responsento region calls.

new_page_size
[in scalar] The page size used by the kernel. All calls involving this ker-
nel must use data sizes that are integral multiples of this page size.

NOTES

The kernel requires memory objects to provide temporary backing storage for
zero-filled memory created bym_allocate calls, issued by both user tasks and
the kernel itself. The kernel allocates an abstract memory object port to repre-
sent the temporary backing storage and os&®ory_object_createto pass the

new memory object to the default memory manager, which provides the storage.

The default memory manager is a trusted system component that is identified to
the kernel at system initialization time. The default memory manager can also
be changed at run time using tlma_set_default_memory_managecall.

The contents of a kernel-created (as opposed to a user-created) memory object
can be modified only in main memory. The default memory manager must not
change the contents of a temporary memory object, or allow unrelated tasks to
access the memory object, control, or name port.

The kernel can provide the maximum size of a temporary memory object be-
cause the object cannot be mapped by another user task.

Mach 3 Kernel Interfaces 111

External Memory Management Interface

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions: memory_object_data_initialize memory_object_data_unavail-
able, memory_object_default_server seqnos_memory_object default_serv-
er.

112 Mach 3 Kernel Interfaces

memory_object_data_error

memory_object_data_error

Function — Indicates no data for a memory object

SYNOPSIS
kern_return_tnemory_object_data_error
(mach_port_t memory_control,
vm_offset_t offset,
vm_size t size,
kern_return_t reasor;

DESCRIPTION

The memory_object_data_error function indicates that the memory manager
cannot provide the kernel with the data requested for the given region, specify-
ing a reason for the error.

When the kernel issuesn@emory_object_data_requestall, the memory man-

ager can respond with raemory_object data_error call to indicate that the

page cannot be retrieved, and that a memory failure exception should be raised
in any client threads that are waiting for the page. Clients are permitted to catch
these exceptions and retry their page faults. As a result, this call can be used to
report transient errors as well as permanent ones. A memory manager can use
this call for both hardware errors (for example, disk failures) and software er-
rors (for example, accessing data that does not exist or is protected).

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

size
[in scalar] The number of bytes of data (startingfége). The number
must convert to an integral number of memory object pages.

reason
[in scalar] Reason for the error. The value could be a POSIX error code
for a hardware error.

NOTES

Thereasoncode is currently ignored by the kernel.

Mach 3 Kernel Interfaces 113

External Memory Management Interface

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functions: memory_object_data_request memory_object data_supply
memory_object_data_unavailable

114 Mach 3 Kernel Interfaces

memory_object_data_initialize

memory_object_data_initialize

Server Interface — Writes initial data back to a temporary memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_data_initialize
(mach_port_t memory_obiject,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset t data,
vm_size t data_coung

DESCRIPTION

A memory_object _data_initialize function is called as the result of a kernel
message providing the default memory manager with initial data for a kernel-
created memory object. If the memory manager already has supplied data (by a
previousmemory_object_data_initialize or memory_object_data_return), it

should ignore this call. Otherwise, the call behaves the same mgthaery ob-
ject_data_return call.

The kernel makes this call only to the default memory manager and only on tem-
porary memory objects that it has created vmtbmory object create Note
that the kernel does not make this call on objects creatadenaory object -

copy.

SEQUENCE NUMBER FORM

seqnos_memory_object_data_initialize
kern_return_seqnos_memory_object _data_initialize

(mach_port_t memory_object,
mach_port_seqno_t seqno
mach_port_t memory_control,
vm_offset_t offset,
vm_offset t data,
vm_size t data_coung

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied by the kernel memory_object_createcall.

Mach 3 Kernel Interfaces 115

External Memory Management Interface

seqno
[in scalar] The sequence number of this message relative to the abstjact
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a responsejby
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the

call.
offset
[in scalar] The offset within the memaory object. |
data
[in pointer to dynamic array of bytes] The data that has been modifigd
while cached in physical memory.
data_count

[in scalar] The number of bytes to be written, startingfédet The |
number converts to an integral number of memory object pages.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions:memory_object_create memory_object_data_return memory_-
object_default_server seqnos_memory_object_default_server

116

Mach 3 Kernel Interfaces

memory_object_data_provided

memory_object_data_provided

Function — Supplies data for a region of a memory object (old form)

SYNOPSIS
kern_return_tnemory_object_data_provided
(mach_port_t memory_control,
vm_offset_t offset,
vm_offset t data,
vm_size t data_count,
vm_prot_t lock_valug;

DESCRIPTION

The memory_object_data_providedfunction supplies the kernel with a range
of data for the specified memory object. A memory manager normally provides
data only in response tan@emory_object_data_requestall from the kernel.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

data
[in pointer to page aligned array of bytes] The address of the data be-
ing provided to the kernel.

data_count
[in scalar] The amount of data to be provided. The number must be an
integral number of memory object pages.

lock value

[in scalar] One or more forms of accesx permitted for the specified
data. Valid values are:

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

Mach 3 Kernel Interfaces 117

External Memory Management Interface

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

VM_PROT_ALL
Prohibits all forms of access.

NOTES

The kernel accepts only integral numbers of pages. It discards any partial pages
without notification.

memory_object_data_providedis the old form ofnemory_object data_sup-
ply.

CAUTIONS

A memory manager must be careful when providing data that has not been ex-
plicitly requested. In particular, a memory manager must ensure that it does not
provide writable data again before it receives back modifications from the ker-
nel. This may require that the memory manager remember which pages it has
provided, or that it exercise other cache control functionsnfeiaory object -

lock_reques) before proceeding. Currently, the kernel prohibits the overwriting
of live data pages.

RETURN VALUE

KERN_SUCCESS

Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functionsmemory_object_data_error, memory_object_data_requestmem-

ory_object _data_supply memory_object _data unavailable memory_ob-
ject_lock request

118 Mach 3 Kernel Interfaces

memory_object_data_request

memory_object_data_request

Server Interface — Requests data from a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_data_request
(mach_port_t memory_obiject,
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length,
vm_prot_t desired_acce$s

DESCRIPTION
A memory_object_data_requestfunction is called as the result of a kernel

message requesting data from the specified memory object, for at least the ac-

cess specified.

The kernel issues this call after a cache miss (that is, a page fault for which the
kernel does not have the data). The kernel requests only amounts of data that are

multiples of the page size included in themory_object_init call.

The memory manager is expected to osemory_object_data_supplyto re-

turn at least the specified data, with as much access as it can allow. If the memo-
ry manager cannot provide the data (for example, because of a hardware error),
it can use thenemory_object_data_errorcall. The memory manager can also

use memory_object_data_unavailableto tell the kernel to supply zero-filled
memory for the region.

SEQUENCE NUMBER FORM

seqnos_memory_object data request
kern_return_steqnos_memory_object _data request

(mach_port_t memory_obiject,
mach_port_seqno_t seqno
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length,
vm_prot_t desired_acce$s

Mach 3 Kernel Interfaces 119

External Memory Management Interface

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memgry
object data, as supplied to the kernel inma_map call.

segno
[in scalar] The sequence number of this message relative to the abstjact
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a responsejby
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object. |

length
[in scalar] The number of bytes requested, startingffaét The num- |
ber converts to an integral number of virtual pages.

desired_access
[in scalar] The memory access modes to be allowed for the cached
data. Possible values are obtained by or’ing together the following val-
ues:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions:memory_object_data_error, memory_object_data_supply mem-
ory_object_data_unavailable memory_object_server seqnos_memory_ob-
ject_server

120 Mach 3 Kernel Interfaces

memory_object_data_return

memory_object_data_return

Server Interface — Writes data back to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tnemory_object_data_return
(mach_port_t
mach_port_t
vm_offset_t
vm_offset_t

vm_size t
boolean_t
boolean_t

DESCRIPTION

memory_obiject,
memory_control,
offset,
data,
data_count
dirty,
kernel_copy;

A memory_object_data_returnfunction is called as the result of a kernel mes-
sage providing the memory manager with data that has been evicted from the

physical memory cache.

The kernel writes back only data that has been modified or is precious. When
the memory manager no longer needs the data (for example, after the data has
been written to permanent storage), it shouldwmsedeallocateto release the

memory resources.

SEQUENCE NUMBER FORM

seqnos_memory_object_data_return
kern_return_steqnos_memory_object _data return
(mach_port_t
mach_port_seqno _t
mach_port_t
vm_offset_t
vm_offset_t
vm_size t
boolean_t
boolean_t

PARAMETERS

memory_object

memory_object,
seqno

memory_control,
offset,
data,
data_count
dirty,
kernel_copy;

[in scalar] The abstract memory object port that represents the memory

object data, as supplied to the kernel inva_map call.

Mach 3 Kernel Interfaces

121

External Memory Management Interface

seqno
[in scalar] The sequence number of this message relative to the abstjact
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a responsejby
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the

call.
offset
[in scalar] The offset within the memory object. |
data
[in pointer to dynamic array of bytes] The data that has been evictpd
from the physical memory cache.
data_count
[in scalar] The number of bytes to be written, startingfédet The |
number converts to an integral number of memory object pages.
dirty
[in scalar] If TRUE, the pages returned have been modified. |
kernel_copy
[in scalar] If TRUE, the kernel has kept a copy of the page. |
NOTES

The kernel can flush clean (that is, un-modified) non-precious pages at its own
discretion. As a result, the memory manager cannot rely on the kernel to keep a
copy of its data or even to provide notification that its data has been discarded.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions: memory_object data supply memory_object _data_write (old
form), vm_deallocate memory_object_server seqnos_memory_object_serv-
er.

122 Mach 3 Kernel Interfaces

memory_object_data_supply

memory_object_data_supply

Function — Supplies data for a region of a memory object

SYNOPSIS
kern_return_tnemory_object_data_supply
(mach_port_t memory_control,
vm_offset_t offset,
vm_offset t data,
mach_msg_type _number _t data_count,
boolean_t deallocate
vm_prot_t lock_value,
boolean_t precious
mach_port_t reply_por;

DESCRIPTION

The memory_object_data_supplyfunction supplies the kernel with a range of
data for the specified memory object. A memory manager normally provides
data only in response tan@emory_object_data_requestall from the kernel.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

data
[in pointer to page aligned array of bytes] The address of the data be-
ing provided to the kernel.

data_count
[in scalar] The amount of data to be provided. The number must be an
integral number of memory object pages.

deallocate

[in scalar] If TRUE, the pages to be copied (startindaa#) will be de-
allocated from the memory manager’'s address space as a result of be-
ing copied into the message, allowing the pages to be moved into the
kernel instead of being physically copied.

Mach 3 Kernel Interfaces 123

External Memory Management Interface

lock_value

[in scalar] One or more forms of accesx permitted for the specified |
data. Valid values are:

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

VM_PROT_ALL
Prohibits all forms of access.

precious
[in scalar] If TRUE, the pages being supplied are “precious”, that i§,
the memory manager is not (necessarily) retaining its own copy. These
pages must be returned to the manager when evicted from memory,
even if not modified.

reply_port
[in scalar] A port to which the kernel should sench@mory_object_- |
supply_completedto indicate the status of the accepted data. MACH_-
PORT_NULL is allowed. The reply message indicates which pages
have been accepted.

NOTES

The kernel accepts only integral numbers of pages. It discards any partial pages
without notification.

CAUTIONS

A memory manager must be careful when providing data that has not been ex-
plicitly requested. In particular, a memory manager must ensure that it does not
provide writable data again before it receives back modifications from the ker-
nel. This may require that the memory manager remember which pages it has
provided, or that it exercise other cache control functionsnfeiaory object -
lock_reques) before proceeding. Currently, the kernel prohibits the overwriting
of live data pages.

124 Mach 3 Kernel Interfaces

memory_object_data_supply

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functions:memory_object_data_error, memory_object_data_provided (old
form), memory_object_data_request memory_object_data_unavailable
memory_object_lock_requestmemory_object_supply _completed

Mach 3 Kernel Interfaces 125

External Memory Management Interface

memory_object_data_unavailable

Function — Indicates no data for a memory object

SYNOPSIS
kern_return_tnemory_object_data_unavailable
(mach_port_t memory_control,
vm_offset_t offset,
vm_size_t size;

DESCRIPTION

The memory_object_data_unavailable function indicates that the memory
manager cannot provide the kernel with the data requested for the given region.
Instead, the kernel should provide the data for this region.

A memory manager can use this call in any of the following situations:

When the object was created by the kernel fveamory_object_creat¢ and

the kernel has not yet provided data for the region (via eitteenory ob-
ject_data_initialize or memory_object_data_return). In this case, the ob-

ject is a temporary memory object; the memory manager is the default
memory manager; and the kernel should provide zero-filled pages for the ob-
ject.

When the object was created bym@mory_object_copy In this case, the
kernel should copy the region from the original memory object.

When the object is a normal user-created memory object. In this case, the
kernel should provide unlocked zero-filled pages for the region.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memdyy
manager for cache management requests. This port is provided by the
kernel in anemory_object_init or amemory_object_createcall.

offset
[in scalar] The offset within the memory object, in bytes. |

size
[in scalar] The number of bytes of data (startingfégej. The number |
must convert to an integral number of memory object pages.

126 Mach 3 Kernel Interfaces

memory_object_data_unavailable

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functions:memory_object_copy memory_object_create memory_object_-
data_error, memory_object_data_requestmemory_object_data_supply

Mach 3 Kernel Interfaces 127

External Memory Management Interface

memory_object_data_unlock

Server Interface — Requests access to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_data_unlock
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_acce3$s

DESCRIPTION

A memory_object_data_unlockfunction is called as the result of a kernel mes-
sage requesting the memory manager to permit at least the desired access to the
specified data cached by the kernel. The memory manager is expected to use the
memory_object_lock requestall in response.

SEQUENCE NUMBER FORM

seqnos_memory_object _data_unlock
kern_return_teqnos_memory_object data_unlock

(mach_port_t memory_object,
mach_port_seqno_t segng
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_acce3$s

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memgry
object data, as supplied to the kernel inva_map call.

segno
[in scalar] The sequence number of this message relative to the abstjact
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a response|oy
the memory manager. If the memory object has been supplied to more

128 Mach 3 Kernel Interfaces

memory_object_data_unlock

than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes to which the access applies, starting at
offset The number converts to an integral number of memory object
pages.

desired_access
[in scalar] The memory access modes requested for the cached data.
Possible values are obtained by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions: memory_object_lock_completed memory_object_lock_request
memory_object_serversegqnos_memory_object_server

Mach 3 Kernel Interfaces 129

External Memory Management Interface

memory_object_data_write

Server Interface — Writes changed data back to a memory object (old form)

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_data_write
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data, |
vm_size t data_coun,

DESCRIPTION

A memory_object_data_write function is called as the result of a kernel mes-
sage providing the memory manager with data that has been modified while
cached in physical memory. This old form is used if the memory manager
makes the object ready via the attemory_object_set_attributesinstead of
memory_object_ready

The kernel writes back only data that has been modified. When the memory
manager no longer needs the data (for example, after the data has been written
to permanent storage), it should wse_deallocateto release the memory re-
sources.

SEQUENCE NUMBER FORM

seqnos_memory_object data_write
kern_return_steqnos_memory_object_data_write

(mach_port_t memory_object,
mach_port_seqno_t segnQ
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data, |
vm_size t data_coun,

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memgry
object data, as supplied to the kernel inma_map call.

130 Mach 3 Kernel Interfaces

memory_object_data_write

seqno
[in scalar] The sequence number of this message relative to the abstract
memory object port.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the

call.

offset
[in scalar] The offset within the memory object.

data
[in pointer to dynamic array of bytes] The data that has been modified
while cached in physical memory.

data_count
[in scalar] The number of bytes to be written, startingftget The
number converts to an integral number of memory object pages.

NOTES

The kernel can flush clean (that is, un-modified) pages at its own discretion. As
a result, the memory manager cannot rely on the kernel to keep a copy of its
data or even to provide notification that its data has been discarded.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions: memory_object_data_return memory_object_set_attributes
vm_deallocate memory_object_serverseqnos_memory_object_server

Mach 3 Kernel Interfaces 131

External Memory Management Interface

memory_object_destroy

Function — Shuts down a memory object

SYNOPSIS
kern_return_tnemory_object_destroy
(mach_port_t memory_control,
kern_return_t reason;

DESCRIPTION

The memory_object_destroyfunction tells the kernel to shut down the speci-
fied memory object. As a result of this call, the kernel no longer supports paging
activity or any memory object calls on the memory object. The kernel issues a
memory_object_terminatecall to pass to the memory manager all rights to the
memory object port, the memory control port, and the memory name port.

To ensure that any modified cached data is returned before the object is terminat-
ed, the memory manager should caémory_object lock requestwith shoul-
d_flush set and a lock value of VM_PROT_WRITE before it makes the
memory_object_destroycall.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memdyy
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

reason
[in scalar] An error code indicating when the object must be destroyeq.

NOTES
Thereasoncode is currently ignored by the kernel.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functionsmemory_object_lock_requestmemory_object_terminate

132 Mach 3 Kernel Interfaces

memory_object_get_attributes

memory_object_get_attributes

Function — Returns current attributes for a memory object

SYNOPSIS
kern_return_tnemory_object_get_attributes
(mach_port_t memory_control,
boolean_t* object_ready,
boolean_t* may_cache_object,
memory_object_copy_strategy_t* copy_strategy

DESCRIPTION

The memory_object_get_attributesfunction retrieves the current attributes for
the specified memory object.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

object_ready
[out scalar] Ready indicator. If true, the kernel can issue new data and
unlock requests on the memory object.

may_cache_object
[out scalar] Cache indicator. If true, the kernel can cache data associat-
ed with the memory object, even if virtual memory references to it are
removed.

copy_strategy
[out scalar] How the kernel should handle copying of regions associat-
ed with the memory object. Possible values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object's
data. Normally, the kernel requests each page with read ac-
cess, copies the data, and then (optionally) flushes the data.

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (vimemory_object_copy be-
fore copying any data.

Mach 3 Kernel Interfaces 133

External Memory Management Interface

MEMORY_OBJECT _COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memo
object is removed, the object is destroyed without returnin
any in-memory pages.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functionsmemory_object_change_attributesmemory_object_copy memo-
ry_object_ready.

134 Mach 3 Kernel Interfaces

memory_object_init

memory_object_init

Server Interface — Initializes a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_init
(mach_port_t memory_obiject,
mach_port_t memory_control,
mach_port_t memory_object_name,
vm_size t memory_object_page_s)ze

DESCRIPTION

A memory_object_init function is called as the result of a kernel message noti-
fying a memory manager that the kernel has been asked to map the specified
memory object into a task’s virtual address space.

When asked to map a memory object for the first time, the kernel responds by
making amemory_object_init call on the abstract memory object. This call is
provided as a convenience to the memory manager, to allow it to initialize data
structures and prepare to receive other requests.

In addition to the abstract memory object port itself, the call provides the follow-
ing two ports:

A memory cache control port that the memory manager can use to control
use of its data by the kernel. The memory manager gets send rights for this
port.

A memory cache name port that the kernel will use to identify the memory
object to other tasks.

The kernel holds send rights for the abstract memory object port, and both send
and receive rights for the memory cache control and name ports.

The call also supplies the virtual page size to be used for the memory mapping.
The memory manager can use this size to detect mappings that use different
data structures at initialization time, or to allocate buffers for use in reading data.

If a memory object is mapped into the address space of more than one task on
different hosts (with independent kernels), the memory manager will receive a
memory_object_init call from each kernel, containing a unique set of control
and name ports. Note that each kernel may also use a different page size.

Mach 3 Kernel Interfaces 135

External Memory Management Interface

SEQUENCE NUMBER FORM

seqnos_memory_object_init
kern_return_steqnos_memory_object _init

(mach_port_t memory_object,
mach_port_seqno_t segnQ
mach_port_t memory_control,
mach_port_t memory_object_name,
vm_size t memory_object_page_s)ze

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memgry
object data, as supplied to the kernel inma_map call.

segno
[in scalar] The sequence number of this message relative to the abstjact
memory object port.

memory_control
[in scalar] The memory cache control port to be used by the memdyy
manager. If the memory object has been supplied to more than one ker-
nel, this parameter identifies the kernel that is making the call.

memory_object_name
[in scalar] The memory cache name port used by the kernel to referjto
the memory object data in responseio region calls.

memory_object_page_size
[in scalar] The page size used by the kernel. All calls involving this ke}-
nel must use data sizes that are integral multiples of this page size.

NOTES

When the memory manager is ready to accept data requests for this memory ob-
ject, it must callmemory_object_ready Otherwise, the kernel will not process
requests on this object.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions:memory_object_ready memory_object_terminate memory_ob-
ject_server, seqnos_memory_object_server

136 Mach 3 Kernel Interfaces

memory_object_lock_completed

memory_object_lock_completed

Server Interface — Indicates completion of a consistency control call

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_lock_completed
(mach_port_t memory_obiject,
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length);

DESCRIPTION

A memory_object_lock _completedfunction is called as the result of a kernel
message confirming the kernel’s action in responsarieraory_object lock -
request call from the memory manager. The memory manager can use the
memory_object_lock requestall to:

Alter access restrictions specified in tmemory_object data_supplycall
or a previousnemory_object_lock_requestall.

Write back modifications made in memory.
Invalidate its cached data.

When the kernel completes the requested actions, it wasory object -
lock_completed (asynchronously) using the port explicitly provided in the
memory_object_lock request call. Because the memory manager cannot
know which pages have been modified, or even which pages remain in the
cache, it cannot know how many pages will be written back in response to a
memory_object_lock requestcall. Receiving thenemory_object lock _com-
pleted call is the only sure means of detecting completion. The completion call
includes the offset and length values from the consistency request to distinguish
it from other consistency requests.

SEQUENCE NUMBER FORM

seqnos_memory_object_lock _completed
kern_return_seqnos_memory_object lock _completed

(mach_port_t memory_object,
mach_port_seqno_t seqno
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length);

Mach 3 Kernel Interfaces 137

External Memory Management Interface

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memgry
object data, as supplied to the kernel inma_map call.

segno
[in scalar] The sequence number of this message relative to the pprt
named in thenemory_object_lock requesimessage.

memory_control
[in scalar] The memory cache control port to be used for a responsejby
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

offset
[in scalar] The offset within the memory object. |

length
[in scalar] The number of bytes to which the call refers, startimgf-at |
set The number converts to an integral number of memory object pag-
es.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions: memory_object_lock_request memory_object_server seqgnos._-
memory_object_server

138 Mach 3 Kernel Interfaces

memory_object_lock_request

memory_object_lock_request

Function — Restricts access to memory object data

SYNOPSIS
kern_return_tnemory_object_lock_request
(mach_port_t memory_control,
vm_offset_t offset,
vm_size t size,
memory_object_return_t should_return,
boolean_t should_flush,
vm_prot_t lock_value,
mach_port_t reply_to;

DESCRIPTION

The memory_object_lock_requestfunction allows the memory manager to
make the following requests of the kernel:

Clean the pages within the specified range by writing back all changed (that
is, dirty) and precious pages. The kernel usesrtémory object data re-

turn call to write back the data. Tishould_returnparameter must be set to
non-zero.

Flush all cached data within the specified range. The kernel invalidates the
range of data and revokes all uses of that data.sfibeld_flushparameter
must be set to true.

Alter access restrictions specified in tmemory_object data_supplycall

or a previousnemory_object_lock_requestcall. Thelock valueparameter

must specify the new access restrictions. Note that this parameter can be
used to unlock previously locked data.

Once the kernel performs all of the actions requested by this call, it issues a
memory_object_lock _completectall using thaeply toport.

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memory
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

Mach 3 Kernel Interfaces 139

External Memory Management Interface

size

[in scalar] The number of bytes of data (startingfége) to be affect- |
ed. The number must convert to an integral number of memory object
pages.

should_return

[in scalar] Clean indicator. Values are: |

MEMORY_OBJECT_RETURN_NONE
Don't return any pages. Bhould_flushis TRUE, pages will
be discarded.

MEMORY_OBJECT_RETURN_DIRTY
Return only dirty (modified) pages. should_flushis TRUE,
precious pages will be discarded; otherwise, the kernel main-
tains responsibility for precious pages.

MEMORY_OBJECT RETURN_ALL
Both dirty and precious pages are returnedghtiuld_flushs
FALSE, the kernel maintains responsibility for the precious
pages.

should_flush

[in scalar] Flush indicator. If true, the kernel flushes all pages withip
the range.

lock_value

[in scalar] One or more forms of access permitted for the specified |
data. Valid values are:

VM_PROT_NO_CHANGE
Do not change the protection of any pages.

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

VM_PROT_ALL
Prohibits all forms of access.

140

Mach 3 Kernel Interfaces

memory_object_lock_request

reply_to
[in scalar] The response port to be used by the kernel on a ocadine
ory_object_lock_completed or MACH_PORT_NULL if no response
is required.

NOTES

The memory_object_lock _requestcall affects only data that is cached at the
time of the call. Access restrictions cannot be applied to pages for which data
has not been provided.

When a running thread requires an access that is currently prohibited, the kernel
issues anemory_object_data_unlockcall specifying the access required. The
memory manager can then usemory_object_lock requestto relax its ac-

cess restrictions on the data.

To indicate that an unlock request is invalid (that is, requires permission that can
never be granted), the memory manager must first flush the page. When the ker-
nel requests the data again with the higher permission, the memory manager can
indicate the error by responding with a calimemory_object_data_error

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functions: memory_object_data_supply memory_object_data_unlock
memory_object_lock_completed

Mach 3 Kernel Interfaces 141

External Memory Management Interface

memory_object_ready

Function — Marks a memory object is ready to receive paging operations

SYNOPSIS
kern_return_tnemory_object_ready
(mach_port_t memory_control,
boolean_t may_cache_object,
memory_object_copy_strategy t copy_strategy

DESCRIPTION

The memory_object_ready function informs the kernel that the manager is
ready to receive data or unlock requests on behalf of clients. Performance-relat-
ed attributes for the specified memory object can also be set at this time. These
attributes control whether the kernel is permitted to:

Retain data from a memory object even after all address space mappings
have been de-allocateohdy cache_objeqarameter).

Perform optimizations for virtual memory copy operationspfy_strategy
parameter).

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memdy
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associajed
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associatpd
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object's
data. Normally, the kernel requests each page with read ac-
cess, copies the data, and then (optionally) flushes the data.

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (vimemory_object_copy be-
fore copying any data.

142 Mach 3 Kernel Interfaces

memory_object_ready

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

NOTES

Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly by different programs. By retaining the data
for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION
Functionsmemory_object_change_attributesmemory_object_copy memo-
ry_object_get_attributes memory_object_init, memory_object_set_at-
tributes (old form).

Mach 3 Kernel Interfaces 143

External Memory Management Interface

memory_object_set_attributes

Function — Sets attributes for a memory object (old form)

SYNOPSIS
kern_return_tnemory_object_set_attributes
(mach_port_t memory_control,
boolean_t object_ready,
boolean_t may_cache_object,
memory_object_copy_strategy t copy_strategy

DESCRIPTION

The memory_object_set_attributesfunction allows the memory manager to
set performance-related attributes for the specified memory object. These at-
tributes control whether the kernel is permitted to:

Make data or unlock requests on behalf of clieobgect_readyparameter).

Retain data from a memory object even after all address space mappings
have been de-allocatechéy cache_objeqarameter).

Perform optimizations for virtual memory copy operationspfy_strategy
parameter).

PARAMETERS

memory_control
[in scalar] The memory cache control port to be used by the memdyy
manager for cache management requests. This port is provided by the
kernel in anemory_object_init call.

object_ready
[in scalar] Ready indicator. If true, the kernel can issue new data apd
unlock requests on the memory object.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associajed
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associatpd
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object's
data. Normally, the kernel requests each page with read ac-
cess, copies the data, and then (optionally) flushes the data.

144 Mach 3 Kernel Interfaces

memory_object_set_attributes

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (vimemory_object_copy be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

NOTES

memory_object_set_attributesis the old form oimnemory_object_change_at-
tributes. When used to change the cache or copy strategy attributes, it has the
same effect (with the omission of a possible reply) rasmory_ob-
ject_change_attributes The difference between these two calls isrédaely at-
tribute. The use of this old call with tmeady attribute set has the same basic
effect as the newnemory_object_readycall. However, the use of this old call
informs the kernel that this is an old form memory manager that expeots-
ry_object_data write messages instead of the nevemory_object_data_re-

turn messages implied hywemory_object_ready Changing a memory object

to be not ready does not affect data and unlock requests already in progress.
Such requests will not be aborted or reissued.

Sharing cached data among all the clients of a memory object can have a major

impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-

gram images can be used regularly by different programs. By retaining the data

for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

KERN_SUCCESS
Since this function does not receive a reply message, it has no return
value. Only message transmission errors apply.

RELATED INFORMATION

Functionsmemory_object_change_attributesmemory_object_copy memo-
ry_object_get_attributes memory_object_init, memory_object_ready

Mach 3 Kernel Interfaces 145

External Memory Management Interface

memory_object_supply_completed

Server Interface — Indicates completion of a data supply call

LIBRARY

Not declared anywhere.

SYNOPSIS

kern_return_tnemory_object_supply_completed

(mach_port_t
mach_port_t
vm_offset_t
vm_size_t
kern_return_t
vm_offset_t

DESCRIPTION

memory_object,
memory_control,
offset,
length
result
error_offse};

A memory_object_supply_completedunction is called as the result of a ker-
nel message confirming the kernel’s action in responsenteraory object -

data_supply call from the memory manager.

When the kernel accepts the pages, it callsnory object_supply completed
(asynchronously) using the port explicitly provided in themory object -

data_supply call. Because the data supply call can provide multiple pages, not
all of which the kernel may necessarily accept and some of which the kernel
may have to return to the manager (if precious), the kernel provides this re-
sponse. If the kernel does not accept all of the pages in the data supply message,
it will indicate so in the completion response. If the pages not accepted are pre-
cious, they will be returned (imemory_object _data return messages) before

it sends this completion message. The completion call includes the offset and
length values from the supply request to distinguish it from other supply re-
quests.

SEQUENCE NUMBER FORM

seqnos_memory_object_supply _completed
kern_return_steqnos_memory_object_supply_completed
(mach_port_t memory_object,

mach_port_seqno_t segngQ
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length
kern_return_t result
vm_offset t error_offse};

146

Mach 3 Kernel Interfaces

memory_object_supply_completed

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memory
object data, as supplied to the kernel inva_map call.

segno
[in scalar] The sequence number of this message relative to the port
named in thenemory_object_data_supplycall.

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the

call.

offset
[in scalar] The offset within the memory object from the corresponding
data supply call

length
[in scalar] The number of bytes accepted. The number converts to an
integral number of memory object pages.

result

[in scalar] A kernel return code indicating the result of the supply oper-
ation, possibly KERN_SUCCESS. KERN_MEMORY_PRESENT is
currently the only error returned; other errors (invalid arguments, for
example) abort the data supply operation.

error_offset
[in scalar] The offset within the memory object where the first error oc-
curred.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functions: memory_object_data_supply memory_object_server seqnos_-
memory_object_server

Mach 3 Kernel Interfaces 147

External Memory Management Interface

memory_object_terminate

Server Interface — Relinquishes access to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_terminate
(mach_port_t memory_object,
mach_port_t memory_control,
mach_port_t memory_object_narie

DESCRIPTION

A memory_object_terminate function is called as the result of a kernel mes-
sage notifying a memory manager that no mappings of the specified memory ob-
ject remain. The kernel makes this call to allow the memory manager to clean
up data structures associated with the de-allocated mappings. The call provides
receive rights to the memory cache control and name ports so that the memory
manager can destroy the ports (mach_port_deallocatg. The kernel also re-
linquishes its send rights for all three ports.

The kernel terminates a memory object only after all address space mappings of
the object have been de-allocated, or upon explicit request by the memory man-
ager.

SEQUENCE NUMBER FORM

seqnos_memory_object_terminate
kern_return_steqnos_memory_object_terminate

(mach_port_t memory_object,
mach_port_seqno_t seqgno,
mach_port_t memory_control,
mach_port_t memory_object_narie

PARAMETERS

memory_object
[in scalar] The abstract memory object port that represents the memgry
object data, as supplied to the kernel inma_map call.

segno
[in scalar] The sequence number of this message relative to the abstjact
memory object port.

148 Mach 3 Kernel Interfaces

memory_object_terminate

memory_control
[in scalar] The memory cache control port to be used for a response by
the memory manager. If the memory object has been supplied to more
than one kernel, this parameter identifies the kernel that is making the
call.

memory_object_name
[in scalar] The memory cache name port used by the kernel to refer to
the memory object data in responsero region calls.

NOTES

If a client thread callsm_map to map a memory object while the kernel is call-

ing memory_object_terminate for the same memory object, theemory_ob-
ject_init call may appear before thmemory_object _terminate call. This
sequence is indistinguishable from the case where another kernel is issuing a
memory_object_init call. In other words, the control and name ports included

in the initialization will be different from those included in the termination. A
memory manager must be aware that this sequence can occur even when all
mappings of a memory object take place on the same host.

RETURN VALUE

KERN_SUCCESS
This value is ignored since the call is made by the kernel, which does
not wait for a reply.

RELATED INFORMATION

Functionsmemory_object_destroymemory_object_init, mach_port_deallo-
cate memory_object_serversegnos_memory_object_server

Mach 3 Kernel Interfaces 149

External Memory Management Interface

vm_set default_memory_manager

Function — Sets the default memory manager.

SYNOPSIS
kern_return_tm_set_default_ memory_manager
(mach_port_t host,
mach_port_t* default_manager

DESCRIPTION

Thevm_set_default_memory_managefunction establishes the default memo-
ry manager for a host.

PARAMETERS

host
[in scalar] The control port naming the host for which the default menj-
ory manager is to be set.

default_manager
[pointer to in/out scalar] A memory manager port to the new default
memory manager. If this value is MACH_PORT_NULL, the old mem-
ory manager is not changed. The old memory manager port is returned
in this variable.

RETURN VALUE

KERN_SUCCESS
The old default memory port was returned and the new manager estab-
lished.

KERN_INVALID_ARGUMENT
The supplied host port is not the host control port.

RELATED INFORMATION

Functionsmemory_object_createvm_allocate

150 Mach 3 Kernel Interfaces

CHAPTER 6 Thread Interface

This chapter discusses the specifics of the kernel's thread interfaces. This includes status
functions related to threads. Properties associated with threads, such as special ports, are
included here as well. Functions that apply to more than one thread appear in the task in-

terface chapter.

Mach 3 Kernel Interfaces 151

Thread Interface

catch_exception_raise

Server Interface — Handles the occurrence of an exception within a thread

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tatch_exception_raise

(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
int exception,
int code,
int subcodg

DESCRIPTION

A catch_exception_raisdunction is called byxc_serveras the result of a ker-
nel message indicating that an exception occurred within a theregiption_-
port is the port named vithread_set _special_portor task_set_special_port
as the port that responds when the thread takes an exception.

PARAMETERS

exception_port
[in scalar] The port to which the exception notification was sent. |

thread
[in scalar] The control port to the thread taking the exception. |

task
[in scalar] The control port to the task containing the thread taking tije
exception.

exception
[in scalar] The type of the exception, as defined<mach/excep- |
tion.h>. The machine independent values raised by all implementa-
tions are:

EXC_BAD_ACCESS
Could not access memorgode containskern_return_tde-
scribing errorsubcodecontains bad memory address.

EXC_BAD_INSTRUCTION
Instruction failed. lllegal or undefined instruction or operand

152 Mach 3 Kernel Interfaces

catch_exception_raise

EXC_ARITHMETIC
Arithmetic exception; exact nature of exception isadefield

EXC_EMULATION
Emulation instruction. Emulation support instruction encoun-
tered. Details irodeandsubcodsdields.

EXC_SOFTWARE
Software generated exception; exact exception isade
field. Codes 0 - OXFFFF reserved to hardware; codes 0x10000
- OX1FFFF reserved for OS emulation (Unix).

EXC_BREAKPOINT
Trace, breakpoint, etc. Detailsdndefield.

code
[in scalar] A code indicating a particular instancexdéeption
subcode
[in scalar] A specific type afode
NOTES

When an exception occurs in a thread, the thread sends an exception message to
its exception port, blocking in the kernel waiting for the receipt of a reply. It is
assumed that some task is listening (most likely witth_msg_serverto this

port, using theexc_serverfunction to decode the messages and then call the
linked in catch_exception_raiselt is the job ofcatch_exception_raise¢o han-

dle the exception and decide the course of actiorthi@ad The state of the
blocked thread can be examined wviliread_get_state

If the thread should continue from the point of exceptaich_exception_-

raise would return KERN_SUCCESS. This causes a reply message to be sent to
the kernel, which will allow the thread to continue from the point of the excep-
tion.

If some other action should be takenthyead the following actions should be
performed bycatch_exception_raise
thread_suspend This keeps the thread from proceeding after the next step.

thread_abort. This aborts the message receive operation currently blocking
the thread.

thread_set_state Set the thread’s state so that it continues doing something
else.

thread_resume Let the thread start running from its new state.

Return a value other than KERN_SUCCESS so that no reply message is
sent. (Actually, the kernel uses a send once right to send the exception mes-
sage, whichihread_abort destroys, so replying to the message is harmless.)

Mach 3 Kernel Interfaces 153

Thread Interface

The thread can always be destroyed whtead_terminate.

A thread can have two exception ports active for it: its thread exception port and
the task exception port. If an exception message is sent to the thread exception
port (if it exists), and a reply message contains a return value other than
KERN_SUCCESS, the kernel will then send the exception message to the task
exception port. If that exception message receives a reply message with other
than a return value of KERN_SUCCESS, the thread is terminated. Note that this
behavior cannot be obtained by using ttegch_exception_raiseinterface

called byexc_serverandmach_msg_serversince those functions will either
return a reply message with a KERN_SUCCESS value, or none at all.

RETURN VALUE

KERN_SUCCESS
The thread is to continue from the point of exception.

Other values indicate that the exception was handled directly and the thread was
restarted or terminated by the exception handler.

RELATED INFORMATION

Functions: exception_raise exc_server thread_abort, task get special_-
port, thread_get special port thread get state thread resume task -
set_special_port, thread_set_special_part thread_set_state
thread_suspendthread_terminate.

154

Mach 3 Kernel Interfaces

evc_wait

evc_wait

System Trap— Wait for a kernel (device) signalled event

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tvc_wait
(unsigned int eveny;

DESCRIPTION

Theevc_waitfunction causes the invoking thread to wait until the specified ker-
nel (device) generated event occurs. Device drivers (typically mapped devices
intended to be supported by user space drivers) may supply an event count ser-
vice.

The event count service defines one or more event objects, named by task local
event IDs. Each of these event objects has an associated event count, initially
zero. Whenever the associated event occurs (typically a device interrupt), the
event count is incremented. If this count is zero wken wait is called, the
calling thread waits for the next event to occur. Only one thread may be waiting
for the event to occur. If the count is non-zero wieen_wait is called, the

count is simply decremented without causing the thread to wait. The event
count guarantees that no events are lost.

PARAMETERS

event
[in scalar] The task local event ID of the kernel event object.

NOTES

The typical use of this service is within user space device drivers. When a de-
vice interrupt occurs, the (in this case, simple) kernel device driver would place
device status in a shared (with the user device driver) memory window (estab-
lished bydevice_mayp and signal the associated event. The user space device
driver would normally be waiting witkevc_wait The user thread then wakes,
processes the device status, typically interacting with the device via its shared
memory window, then waits for the next interrupt.

Mach 3 Kernel Interfaces 155

Thread Interface

RETURN VALUE

KERN_SUCCESS
The event has occurred.

KERN_INVALID_ARGUMENT
The event object is damaged.

KERN_NO_SPACE

There is already a thread waiting for this event.

RELATED INFORMATION

Functionsdevice_map

156

Mach 3 Kernel Interfaces

exception_raise

exception_raise

Function — Sends an exception message

LIBRARY
#include €nach/exc.h»

SYNOPSIS
kern_return_txception_raise

(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
int exception,
int code,
int subcodg

DESCRIPTION

The exception_raisefunction can be used to send an exception message to an

exception server. This function is normally called only by a thread in the con-

text of the kernel when it takes an exception. It may be called by intermediaries
to signal an exception to an exception server. Note that calling this function

does not cause the specified thread to take an exception; it is called to signify
that the thread did take the specified exception.

PARAMETERS

exception_port
[in scalar] The port to which the exception notification is to be sent.
This is normally the port named vithread_set_special_port or
task_set_special_port

thread
[in scalar] The control port to the thread taking the exception.

task
[in scalar] The control port to the task containing the thread taking the
exception.

exception

[in scalar] The type of the exception, as defined<mach/excep-
tion.h>. The machine independent values raised by all implementa-
tions are:

Mach 3 Kernel Interfaces 157

Thread Interface

EXC_BAD_ACCESS
Could not access memorgode containskern_return_t de-
scribing errorsubcodecontains bad memory address.

EXC_BAD_INSTRUCTION
Instruction failed. lllegal or undefined instruction or operand

EXC_ARITHMETIC
Arithmetic exception; exact nature of exception isddefield

EXC_EMULATION
Emulation instruction. Emulation support instruction encoun-
tered. Details itodeandsubcoddields.

EXC_SOFTWARE
Software generated exception; exact exception isdde
field. Codes 0 - OXFFFF reserved to hardware; codes 0x10000
- OX1FFFF reserved for OS emulation (Unix).

EXC_BREAKPOINT
Trace, breakpoint, etc. Detailsdndefield.

code

[in scalar] A code indicating a particular instancexdéeption |
subcode

[in scalar] A specific type afode |

RETURN VALUE

KERN_SUCCESS
The exception server has indicated that the thread is to continue from
the point of exception.

Other values indicate that the exception was handled directly and the thread was
restarted or terminated by the exception handler.

RELATED INFORMATION
Functions:.catch_exception_raisgexc_server.

158 Mach 3 Kernel Interfaces

mach_sample_thread

mach_sample_thread

Function — Perform periodic PC sampling for a thread

SYNOPSIS

kern_return_tmach_sample_thread
(mach_port_t task,
mach_port_t reply_port
mach_port_t sample_thread

DESCRIPTION

The mach_sample_threadfunction causes the program counter (PC) of the
specifiedsample_threado be sampled periodically (whenever the thread hap-
pens to be running at the time of the kernel’s “hardclock” interrupt). The set of
PC sample values obtained are saved in buffers which are sent to the specified

reply_port

PARAMETERS

task
[in scalar] Random task port on the same nodsaa®ple_thread(not
used)

reply_port
[in scalar] Port to which PC sample buffers are sent. A value of

MACH_PORT_NULL stops PC sampling for the thread.

sample_thread
[in scalar] Thread whose PC is to be sampled

NOTES

[1]
[2]
3]
[4]
[5]
[6]

Once PC sampling (profiling) is enabled for a thread, the kernel will, at random
times, send a buffer full of PC samples to the speciépty port These buff-
ers have the following format:

structmessage
{

mach_msg_header_t head

mach_msg_type_t type

int arg [SIZE_PROF_BUFFER+1];
h

The message ID is 666666. (SIZE_PROF_BUFFER is definethaah/profil-
param.h). arg [SIZE_PROF_BUFFER] specifies the number of values actually

Mach 3 Kernel Interfaces 159

Thread Interface

sent. If this value is less than SIZE_PROF_BUFFER, it means that this is
last buffer to be sent (PC sampling had been turned off for the thread).

RETURN VALUE

KERN_SUCCESS
PC sampling has been enabled/disabled.

KERN_INVALID_ARGUMENT
task reply_port orsample_threadre not valid

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

RELATED INFORMATION
Functionsmach_sample_task

160 Mach 3 Kernel Interfaces

fhe

mach_thread_self

mach_thread_self

SystemTrap — Returns the thread self port

LIBRARY
#include smach/mach_traps.t»

SYNOPSIS

mach_port_tnach_thread_self

0;

DESCRIPTION

The mach_thread_selffunction returns send rights to the thread’s own kernel
port.

PARAMETERS
None

RETURN VALUE
Send rights to the thread’s port.

RELATED INFORMATION
Functionsthread_info.

Mach 3 Kernel Interfaces 161

Thread Interface

swtch

SystemTrap — Attempt a context switch

LIBRARY

Not declared anywhere.

SYNOPSIS

boolean_swtch
0;

DESCRIPTION

The swtch function attempts to context switch the current thread off the proces-
sor.

This function is useful in user level lock management routines. If the current
thread cannot make progress because of some lock, it would execstetche
function. When this returns, the thread should once again try to make progress
by attempting to obtain its lock.

This function returns a flag indicating whether there is anything else for the pro-

cessor to do. If there is nothing else, the thread can spin waiting for its lock, in-
stead of continuing to cadwtch.

PARAMETERS
None

RETURN VALUE

TRUE
There are other threads that the processor could run.

FALSE
The processor has nothing better to do.

RELATED INFORMATION
Functionsswtch_pri, thread_abort, thread_switch.

162 Mach 3 Kernel Interfaces

swtch_pri

swtch_pri

SystemTrap — Attempt a context switch to low priority

LIBRARY
Not declared anywhere.

SYNOPSIS

boolean_swtch_pri
(int priority);

DESCRIPTION

Theswtch_pri function attempts to context switch the current thread off the pro-
cessor. The thread’s priority is lowered to the minimum possible value during
this time. The priority of the thread will be restored when it is awakened.

This function is useful in user level lock management routines. If the current
thread cannot make progress because of some lock, it would execsuadahe-

pri function. When this returns, the thread should once again try to make
progress by attempting to obtain its lock.

This function returns a flag indicating whether there is anything else for the pro-

cessor to do. If there is nothing else, the thread can spin waiting for its lock, in-
stead of continuing to cadwtch_pri.

PARAMETERS

priority
[in scalar] Currently not used.

RETURN VALUE

TRUE
There are other threads that the processor could run.

FALSE
The processor has nothing better to do.

RELATED INFORMATION

Functionsswtch, thread_abort, thread_depress_abortthread_switch.

Mach 3 Kernel Interfaces 163

Thread Interface

thread _abort

Function — Aborts a thread

SYNOPSIS

kern_return_thread_abort
(mach_port_t target_thread)

DESCRIPTION

The thread_abort function aborts page faults and any message primitive calls
(mach_msg mach_msg_receive and mach_msg_seng in use by tar-
get_thread (Note, though, that the message calls retry interrupted message oper-
ations unless MACH_SEND_INTERRUPT and MACH_RCV_INTERRUPT
are specified.) Priority depressions are also aborted. The call returns a code indi-
cating that it was interrupted. The call is interrupted even if the thread (or the
task containing it) is suspended. If it is suspended, the thread receives the inter-
rupt when it resumes.

If its state is not modified before it resumes, the thread will retry an aborted
page fault. The Mach message trap returns either MACH_SEND_INTERRUPT-
ED or MACH_RCV_INTERRUPTED, depending on whether the send or the re-
ceive side was interrupted. Note, though, that the Mach message trap is
contained within thenach_msglibrary routine, which, by default, retries inter-
rupted message calls.

The basic purpose dhread abort is to let one thread cleanly stop another
thread {arget_threadl. The target thread is stopped in such a manner that its fu-
ture execution can be controlled in a predictable way.

PARAMETERS

target_thread
[in scalar] The thread to be aborted. |

NOTES

By way of comparison, théhread suspendfunction keeps the target thread
from executing any further instructions at the user level, including the return
from a system call. Thé¢hread get_statefunction returns the thread’'s user
state, whilehread_set_stateallows modification of the user state.

A problem occurs if a suspended thread had been executing within a system
call. In this case, the thread has, not only a user state, but an associated kernel
state. (The kernel state cannot be changed thittad_set_state) As a result,

when the thread resumes, the system call can return, producing a change in the
user state and, possibly, user memory.

164

Mach 3 Kernel Interfaces

thread_abort

For a thread executing within a system daltead_abort aborts the kernel call

from the thread’s point of view. Specifically, it resets the kernel state so that the
thread will resume execution at the system call return, with the return code val-
ue set to one of the interrupted codes. The system call itself is either completed
entirely or aborted entirely, depending on when the abort is received. As a re-
sult, if the thread’s user state has been modifiethi®ad_set_state it will not

be altered un-predictably by any unexpected system call side effects.

For example, to simulate a POSIX signal, use the following sequence of calls:

thread_suspend— To stop the thread.

thread_abort — To interrupt any system call in progress and set the
return value to “interrupted”. Because the thread is already stopped, it
will not return to user code.

thread_set_state— To modify the thread’s user state to simulate a pro-
cedure call to the signal handler.

thread_resume — To resume execution at the signal handler. If the
thread’s stack is set up correctly, the thread can return to the interrupt-
ed system call. Note that the code to push an extra stack frame and
change the registers is highly machine dependent.

CAUTIONS

As a rule, do not ustiiread_abort on a non-suspended thread. This operation
is very risky because it is difficult to know which system trap, if any, is execut-
ing and whether an interrupt return will result in some useful action by the
thread.

RETURN VALUE

KERN_SUCCESS
The thread received an interrupt.

KERN_INVALID_ARGUMENT
target_threads not a valid thread.

RELATED INFORMATION

Functions:thread_get_state thread_info, thread_set_state thread_suspend
thread_terminate.

Mach 3 Kernel Interfaces 165

Thread Interface

thread_create

Function — Creates a thread within a task

SYNOPSIS
kern_return_thread_create
(mach_port_t parent_task,
mach_port_t* child_thread;

DESCRIPTION

The thread_create function creates a new thread withgarent_task The new
thread has a suspend count of one and no processor state.

The new thread holds a send right for its thread kernel port. A send right for the
thread’s kernel port is also returned to the calling task or threetulih thread
The new thread’s exception port is set to MACH_PORT_NULL.

PARAMETERS

parent_task
[in scalar] The task that is to contain the new thread. |

child_thread
[out scalar] The kernel-assigned name for the new thread.

NOTES

To get a new thread running, first ubeead_set stateto set a processor state
for the thread. Then, uskeread_resumeto schedule the thread for execution.

RETURN VALUE

KERN_SUCCESS
A new thread has been created.

KERN_INVALID_ARGUMENT
parent_tasks not a valid task port.

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

166 Mach 3 Kernel Interfaces

thread_create

RELATED INFORMATION

Functions:task_create task_threads thread_get _special_portthread_get -
state, thread_resume thread_set special_port thread_set_state thread_-
suspend thread_terminate.

Mach 3 Kernel Interfaces 167

Thread Interface

thread_depress_abort

Function — Cancel thread priority depression

SYNOPSIS

kern_return_thread_depress_abort
(mach_port_t thread;

DESCRIPTION

The thread_depress_abortfunction cancels any priority depression effective
for threadcaused by awtch_pri orthread_switch call.

PARAMETERS

thread
[in scalar] Thread whose priority depression is canceled.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_ARGUMENT
threadis not a valid thread.

RELATED INFORMATION

Functionssswtch, swtch_pri, thread_abort, thread_switch.

168 Mach 3 Kernel Interfaces

thread_get_special_port

thread_get_special_port

Function — Returns a send right to a special port

SYNOPSIS
kern_return_thread_get_special_port
(mach_port_t thread,
int which_port,
mach_port_t* special_pory;

DESCRIPTION

Thethread_get special_portfunction returns a send right for a special port be-
longing tothread

The thread kernel port is a port for which the kernel holds the receive right. The
kernel uses this port to identify the thread.

If one thread has a send right for the kernel port of another thread, it can use the
port to perform kernel operations for the other thread. Send rights for a kernel
port normally are held only by the thread to which the port belongs, or by the
task that contains the thread. Using tmach_msg function, however, any
thread can pass a send right for its kernel port to another thread.

MACRO FORMS

thread_get_exception_port
kern_return_thread_get_exception_port
(mach_port_t thread,
mach_port_t* special_port)

O thread_get_special_portlthread
THREAD_EXCEPTION_PORTspecial_port

thread_get_kernel_port
kern_return_thread_get_kernel_port

(mach_port_t thread,
mach_port_t* special_port)
O thread_get special_porfthread THREAD _KERNEL_PORT,
special_port
PARAMETERS
thread

[in scalar] The thread for which to return the port’'s send right.

Mach 3 Kernel Interfaces 169

Thread Interface

which_port
[in scalar] The special port for which the send right is requested. Valld
values are:

THREAD_EXCEPTION_PORT
The thread’s exception port. Used to receive exception mes-
sages from the kernel.

THREAD_KERNEL_PORT
The port used to name the thread. Used to invoke operations
that affect the thread.

special_port
[out scalar] The returned value for the port.

RETURN VALUE

KERN_SUCCESS
The port was returned.

KERN_INVALID_ARGUMENT
threadis not a valid thread avhich_portis not a valid port selector.

RELATED INFORMATION

Functions:mach_thread_self task_get _special_port task_set special_port
thread_create thread_set_special_port

170 Mach 3 Kernel Interfaces

thread_get_state

thread_get_state

Function — Returns the execution state for a thread

SYNOPSIS
kern_return_thread_get_state
(mach_port_t target_thread,
int flavor,
thread_state t old_state,
mach_msg_type number_t* old_stateCnt

DESCRIPTION

Thethread_get_statefunction returns the execution state (for example, the ma-
chine registers) fotarget_thread flavor specifies the type of state information
returned.

For old_state the calling thread supplies an array of integers. On redloin;
statecontains the requested information.

For old_stateCntthe calling thread specifies the maximum number of integers
in old_state On return,old_stateCntcontains the actual number of integers in
old_state

The format of the data returned is machine specific; it is definednicky
thread_status.hv.

PARAMETERS

target_thread
[in scalar] The thread for which the execution state is to be returned.
The calling thread cannot specify itself.

flavor
[in scalar] The type of execution state to be returned. Valid values cor-
respond to supported machined architectures.

old_state

[out array ofint] Array of state information for the specified thread.

old_stateCnt
[pointer to infout scalar] The size of the state array. The maximum size
is defined by THREAD_STATE_MAX.

Mach 3 Kernel Interfaces 171

Thread Interface

RETURN VALUE

KERN_SUCCESS
The state has been returned.

KERN_INVALID_ARGUMENT
target_threads not a valid thread, or specifies the calling threaflaer
vor is not a valid type.

MIG_ARRAY_TOO_LARGE
The returned array is too large fold_state The function fillsold_-
stateand set®ld_stateCnto the number of elements that would have
been returned if there had been enough space.

RELATED INFORMATION
Functionstask _info, thread_info, thread_set_state

172 Mach 3 Kernel Interfaces

thread_info

thread_info

Function — Returns information about a thread

SYNOPSIS
kern_return_thread_info
(mach_port_t target_thread,
int flavor,
thread_info_t thread_info,
mach_msg_type number_t* thread_infoCn,

DESCRIPTION
Thethread_info function returns an information array of tyfevor.

For thread_infq the calling thread supplies an array of integers. On return,
thread_infocontains the requested information.

For thread_infoCnt the calling thread specifies the maximum number of inte-
gers inthread_info On returnthread_infoCntcontains the actual number of in-
tegers irthread_info

Currently, THREAD_BASIC_INFO and THREAD_SCHED_INFO are the only

types of information supported. The size is defined by THREAD_ BASIC_IN-
FO_COUNT or THREAD_SCHED_INFO_COUNT, respectively.

PARAMETERS

target_thread
[in scalar] The thread for which the information is to be returned.

flavor
[in scalar] The type of information to be returned. Valid values are:
THREAD_BASIC_INFO
Returns basic information about the thread, such as the
thread’s run state and suspend count.
THREAD_SCHED_INFO
Returns scheduling information about the thread, such as pri-
ority and scheduling policy.
thread_info

[out array ofint] Information about the specified thread.

Mach 3 Kernel Interfaces 173

Thread Interface

thread_infoCnt
[pointer to in/out scalar] The size of the information structure. The
maximum size is defined by THREAD_INFO_MAX. Possible values
are THREAD_BASIC_INFO_COUNT (for THREAD_BASIC_INFO)
and THREAD_SCHED_INFO_COUNT (for THREAD_SCHED _IN-
FO).

RETURN VALUE

KERN_SUCCESS
The thread information has been returned.

KERN_INVALID_ARGUMENT
target_threads not a valid thread dlavor is not a valid type.

MIG_ARRAY_TOO_LARGE

The returned array is too large ftiiread_info The function fills
thread_infoand setshread_infoCntto the number of elements that
would have been returned if there had been enough space.

RELATED INFORMATION

Functions: task_info, task_threads thread_get special_port thread get -
state thread_set_special_portthread_set_state

Data Structureghread_basic_infq thread_sched_info

174 Mach 3 Kernel Interfaces

thread_max_priority

thread_max_priority

Function — Sets the maximum scheduling priority for a thread

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_thread_max_priority
(mach_port_t thread,
mach_port_t processor_set,
int priority);
DESCRIPTION
The thread_max_priority function sets the maximum scheduling priority for
thread

Threads have three priorities associated with them by the system:

A priority value which can be set by the thread to any value up to a maxi-
mum priority. Newly created threads obtain their priority from their task.

A maximum priority value which can be raised only via privileged operation
so that users may not unfairly compete with other users in their processor
set. Newly created threads obtain their maximum priority from that of their
assigned processor set.

A scheduled priority value which is used to make scheduling decisions for
the thread. This value is determined on the basis of the user priority value by
the scheduling policy (for timesharing, this means adding an increment de-
rived from CPU usage).

This function changes the maximum priority for the thread. Because this func-
tion requires the presentation of the corresponding processor set control port,
this call can reset the maximum priority to any legal value.

PARAMETERS

thread
[in scalar] The thread whose maximum scheduling priority is to be set.

processor_set
[in scalar] The control port for the processor set to which the thread is
currently assigned.

priority
[in scalar] The new maximum priority for the thread.

Mach 3 Kernel Interfaces 175

Thread Interface

RETURN VALUE

KERN_SUCCESS
The priority has been set.

KERN_INVALID_ARGUMENT
threadis not a valid thread, grocessor_setloes not name the proces-
sor set to whiclthreadis currently assigned.

RELATED INFORMATION

Functions: thread_priority, thread_policy, task priority, processor_set -
max_priority .

176 Mach 3 Kernel Interfaces

thread_policy

thread_policy

Function — Sets the scheduling policy to apply to a thread

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_thread_policy
(mach_port_t thread,
int policy,
int data);

DESCRIPTION
Thethread_policy function sets the scheduling policy to be appliethtead

PARAMETERS

thread
[in scalar] The thread scheduling policy is to be set.

policy
[in scalar] Policy to be set. The values currently defined are POLICY_-
TIMESHARE and POLICY_FIXEDPRI.

data
[in scalar] Policy specific data. Currently, this value is used only for
POLICY_FIXEDPRI, in which case it is the quantum to be used (in
milliseconds); to be meaningful, this value must be a multiple of the ba-
sic system quantum (which can be obtained fnmst_info).

RETURN VALUE

KERN_SUCCESS
The policy has been set.

KERN_INVALID_ARGUMENT
thread is not a valid thread, goolicy is not a recognized scheduling
policy value.

KERN_FAILURE
The processor set to whithreadis currently assigned does not permit
policy.

Mach 3 Kernel Interfaces 177

Thread Interface

RELATED INFORMATION
Functions;processor_set policy_enable, processor_set policy disable

178 Mach 3 Kernel Interfaces

thread_priority

thread_priority

Function — Sets the scheduling priority for a thread

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_thread_priority
(mach_port_t thread,
int priority,
boolean_t set_may

DESCRIPTION
Thethread_priority function sets the scheduling priority filwead

PARAMETERS

thread
[in scalar] The thread whose scheduling priority is to be set.

priority
[in scalar] The new priority for the thread.

set_max
[in scalar] True if the thread’s maximum priority should also be set.

NOTES
Threads have three priorities associated with them by the system:

A priority value which can be set by the thread to any value up to a maxi-
mum priority. Newly created threads obtain their priority from their task.

A maximum priority value which can be raised only via privileged operation
so that users may not unfairly compete with other users in their processor
set. Newly created threads obtain their maximum priority from that of their
assigned processor set.

A scheduled priority value which is sued to make scheduling decisions for
the thread. This value is determined on the basis of the user priority value by
the scheduling policy (for timesharing, this means adding an increment de-
rived from CPU usage).

This function changes the priority and optionally the maximum priorityetif -
maxis TRUE) forthread Priorities range from 0 to 31, where lower numbers
denote higher priorities. If the new priority is higher than the priority of the cur-

Mach 3 Kernel Interfaces 179

Thread Interface

rent thread, preemption may occur as a result of this call. This call will fail if
priority is greater than the current maximum priority of the thread. As a result,
this call can only lower the value of a thread’s maximum priority.

RETURN VALUE

KERN_SUCCESS
The priority has been set.

KERN_INVALID_ARGUMENT

threadis not a valid thread, or the priority value is out of range for pri-
ority values.

KERN_FAILURE
The requested operation would violate the thread’s maximum priority.

RELATED INFORMATION

Functions: thread_max_priority, thread_policy,

task_priority, proces-
sor_set_max_priority.

180

Mach 3 Kernel Interfaces

thread_resume

thread _resume

Function — Resumes a thread

SYNOPSIS

kern_return_thread_resume
(mach_port_t target_thread)

DESCRIPTION

The thread_resume function decrements the suspend counttéoget thread

by one. The thread is resumed if its suspend count goes to zero. If the suspend
count is still positive, you must repehtread resumeuntil the count reaches

zero.

PARAMETERS

target_thread
[in scalar] The thread to be resumed.

RETURN VALUE

KERN_SUCCESS
The thread’s suspend count has been decremented.

KERN_FAILURE
The thread'’s suspend count is already at zero. A suspend count must be
either zero or positive.

KERN_INVALID_ARGUMENT
target_threads not a valid thread.

RELATED INFORMATION

Functions:itask_resume task_suspendthread_create thread_info, thread -
suspend thread_terminate.

Mach 3 Kernel Interfaces 181

Thread Interface

thread_set_special_port

Function — Sets a special port for a thread

SYNOPSIS
kern_return_thread_set_special_port
(mach_port_t thread,
int which_port,
mach_port_t special_por};

DESCRIPTION

Thethread_set_special_porfunction sets a special port belongingtoead

MACRO FORMS

thread_set_exception_port
kern_return_thread_set_exception_port

(mach_port_t thread,
mach_port_t special_port)

O thread_set_special_pori{thread THREAD_EXCEPTION_PORT,
special_port

thread_set _kernel_port
kern_return_thread_set kernel_port

(mach_port_t thread,
mach_port_t special_port)
O thread_set_special_por{thread THREAD_KERNEL_PORT,
special_port
PARAMETERS
thread
[in scalar] The thread for which to set the port. |
which_port
[in scalar] The special port to be set. Valid values are: |

THREAD_EXCEPTION_PORT
The thread’s exception port. Used to receive exception mes-
sages from the kernel.

THREAD_KERNEL_PORT
The thread’s kernel port. Used by the kernel to receive mes-
sages from the thread.

182 Mach 3 Kernel Interfaces

thread_set_special_port

special_port
[in scalar] The value for the port.

RETURN VALUE

KERN_SUCCESS
The port was set.

KERN_INVALID_ARGUMENT
threadis not a valid thread avhich_portis not a valid port selector.

RELATED INFORMATION

Functions:mach_thread_self task_get_special_port task_set special_port
thread_create thread_get_special_port

Mach 3 Kernel Interfaces 183

Thread Interface

thread_set_state

Function — Sets the execution state for a thread

SYNOPSIS
kern_return_thread_set_state
(mach_port_t target_thread,
int flavor,
thread_state t new_state,
mach_msg_type_number_t new_stateCnt

DESCRIPTION

The thread_set_statefunction sets the execution state (for example, the ma-
chine registers) fararget_threadflavor specifies the type of state to set.

Fornew_statethe calling thread supplies an array of integers.

For new_stateCntthe calling thread specifies the maximum number of integers
in new_state

The format of the state to set is machine specific; it is definedmiacks
thread_status.tv.

PARAMETERS

target_thread
[in scalar] The thread for which to set the execution state. The callifg
thread cannot specify itself.

flavor
[in scalar] The type of state to set. Valid values correspond to suppgt-
ed machine architecture features.

new_state
[pointer to in array ofnt] Array of state information for the specified |
thread.

new_stateCnt
[in scalar] The size of the state array. The maximum size is defined py
THREAD_STATE_MAX.

RETURN VALUE

KERN_SUCCESS
The state has been set.

184 Mach 3 Kernel Interfaces

thread_set_state

KERN_INVALID_ARGUMENT
target_threads not a valid thread, or specifies the calling threaflaer
vor is not a valid type.

MIG_ARRAY_TOO_LARGE
The state array is too large foew_state The function fillsnew_state
and setsiew_stateCnto the number of elements that would have been
returned if there had been enough space.

RELATED INFORMATION
Functionstask_info, thread_get_statethread_info.

Mach 3 Kernel Interfaces 185

Thread Interface

thread_suspend

Function — Suspends a thread

SYNOPSIS

kern_return_thread_suspend
(mach_port_t target_thread)

DESCRIPTION

The thread_suspendfunction increments the suspend count tioget_thread
and prevents the thread from executing any more user-level instructions.

In this context, a user-level instruction can be either a machine instruction exe-
cuted in user mode or a system trap instruction, including a page fault. If a
thread is currently executing within a system trap, the kernel code may continue
to execute until it reaches the system return code or it may suspend within the
kernel code. In either case, the system trap returns when the thread resumes.

To resume a suspended thread, tlwead resume If the suspend count is
greater than one, you must issheead_resumethat number of times.

PARAMETERS

target_thread
[in scalar] The thread to be suspended. |

CAUTIONS

Unpredictable results may occur if a program suspends a thread and alters its
user state so that its direction is changed upon resuming. Note thiatethe -

abort function allows a system call to be aborted only if it is progressing in a
predictable way.

RETURN VALUE

KERN_SUCCESS
The thread has been suspended.

KERN_INVALID_ARGUMENT
target_threads not a valid thread.

RELATED INFORMATION

Functions: task_resume task_suspend thread_abort, thread get state
thread_info, thread_resume thread_set_statethread_terminate.

186 Mach 3 Kernel Interfaces

thread_switch

thread_switch

SystemTrap — Cause context switch with options

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_thread_switch
(mach_port_t new_thread,
int option,
int time);

DESCRIPTION

The thread_switch function provides low-level access to the scheduler’s con-
text switching codenew_threads a hint that implements hand-off scheduling.
The operating system will attempt to switch directly to the new thread (bypass-
ing the normal logic that selects the next thread to run) if possible. Since this is
a hint, it may be incorrect; it is ignored if it doesn’t specify a thread on the same
host as the current thread or if the scheduler cannot switch to that thread (i.e.,
not runable or already running on another processor). In this case, the normal
logic to select the next thread to run is used; the current thread may continue
running if there is no other appropriate thread to run.

The option argument specifies the interpretation and useénod The possible
values (fromxmach/thread_switch.h> are:

SWITCH_OPTION_NONE
Thetimeargument is ignored.

SWITCH_OPTION_WAIT
The thread is blocked for the speciftede This wait is cannot be can-
celed bythread_resume only thread_abort can terminate this wait.

SWITCH_OPTION_DEPRESS
The thread’s priority is depressed to the lowest possible valuarier
The priority depression is aborted whéme has passed, when the cur-
rent thread is next run (either via hand-off scheduling or because the
processor set has nothing better to do), or vihesad_abort or thre-
ad_depress_abortis applied to the current thread. Changing the
thread’s priority (vighread_priority) will not affect this depression.

The minimum time and units of time can be obtained asnihetimeoutvalue
from the HOST_SCHED_INFO flavor aébst_info.

Mach 3 Kernel Interfaces 187

Thread Interface

PARAMETERS
new_thread
[in scalar] Thread to which the processor should switch context. |
option
[in scalar] Options applicable to the context switch. |
time

[in scalar] Time duration during which the thread should be affected iy
option

NOTES

thread_switch is often called when the current thread can proceed no further
for some reason; the various options and arguments allow information about
this reason to be transmitted to the kernel. fiv_threadargument (hand-off
scheduling) is useful when the identity of the thread that must make progress be-
fore the current thread runs again is known. The SWITCH_OPTION_WAIT op-
tion is used when the amount of time that the current thread must wait before it
can do anything useful can be estimated and is fairly short, especially when the
identity of the thread for which this thread must wait is not known.

CAUTIONS

Users should beware of callintpread_switch with an invalid hint (e.g.,
THREAD_NULL) and no option. Because the time-sharing scheduler varies the
priority of threads based on usage, this may result in a waste of CPU time if the
thread that must be run is of lower priority. The use of the SWITCH_OPTION_-
DEPRESS option in this situation is highly recommended.

thread_switch ignores policies. Users relying on the preemption semantics of a
fixed time policy should be aware ththtead switch ignores these semantics;

it will run the specifiechew_threadndependent of its priority and the priority

of any threads that could run instead.

RETURN VALUE

KERN_SUCCESS
The call succeeded.

KERN_INVALID_ARGUMENT
new_threads not a valid thread, aptionis not a recognized option.

RELATED INFORMATION

Functionssswtch, swtch_pri, thread_abort, thread_depress_abort |

188 Mach 3 Kernel Interfaces

thread_terminate

thread_terminate

Function — Destroys a thread

SYNOPSIS

kern_return_thread_terminate
(mach_port_t

DESCRIPTION
Thethread_terminate function kills createtarget_thread

PARAMETERS

target_thread
[in scalar] The thread to be destroyed.

RETURN VALUE

KERN_SUCCESS
The thread has been killed.

KERN_INVALID_ARGUMENT
target_threads not a valid thread.

RELATED INFORMATION

target_thread)

Functions: task_terminate, task threads thread create thread resume

thread_suspend

Mach 3 Kernel Interfaces

189

Thread Interface

thread_wire

Function — Marks the thread as privileged with respect to kernel resources

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_thread_wire
(mach_port_t host_priv
mach_port_t thread,
boolean_t wired);

DESCRIPTION

Thethread_wire function marks the thread as “wired”. A “wired” thread is al-
ways eligible to be scheduled and can consume physical memory even when
free memory is scarce. This property should be assigned to threads in the de-
fault page-out path. Threads not in the default page-out path should not have
this property to prevent the kernel's free list of pages from being exhausted.

PARAMETERS
host_priv
[in scalar] The privileged control port for the host on which the threafl
executes.
thread
[in scalar] The thread to be wired. |
wired
[in scalar] TRUE if the thread is to be wired. |

RETURN VALUE

KERN_SUCCESS
The thread is wired.

KERN_INVALID_ARGUMENT
threadis not a valid thread drost_privis not the control port for the
host on whichthreadexecutes.

RELATED INFORMATION

Functionsvm_wire.

190 Mach 3 Kernel Interfaces

CHAPTER 7 Task Interface

This chapter discusses the specifics of the kernel's task interfaces. This includes func-
tions that return status information for a task. Also included are functions that operate
upon all or a set of threads within a task.

Mach 3 Kernel Interfaces 191

Task Interface

mach_sample_task

SYNOPSIS

DESCRIPTION

PARAMETERS

NOTES

[1]
2]
[3]
[4]
[5]
[6]

Function — Perform periodic PC sampling for a task

kern_return_tnach_sample_task
(mach_port_t task,
mach_port_t reply_port
mach_port_t sample_task

Themach_sample_taskunction causes the program counter (PC) of the sped
fied sample_tasKactually, all of the threads withsample_taskto be sampled
periodically (whenever one of the threads happens to be running at the timl of
the kernel's “hardclock” interrupt). The set of PC sample values obtained gre
saved in buffers which are sent to the speciiégdy port

task
[in scalar] Random task port on the same nodsaasple_task(not
used)

reply_port
[in scalar] Port to which PC sample buffers are sent. A value ¢f

MACH_PORT_NULL stops PC sampling for the task.

sample_task
[in scalar] Task whose threads’ PC are to be sampled

Once PC sampling (profiling) is enabled for a task, the kernel will, at randdm
times, send a buffer full of PC samples to the speciépty port These buff-
ers have the following format:

structmessage
{

mach_msg_header _t head

mach_msg_type t type

int arg [SIZE_PROF_BUFFER+1];
3

The message ID is 666666. (SIZE_PROF_BUFFER is definetagh/profil-
param.h). arg [SIZE_PROF_BUFFER] specifies the number of values actually

192

Mach 3 Kernel Interfaces

mach_sample_task

sent. If this value is less than SIZE_PROF_BUFFER, it means that this is the
last buffer to be sent (PC sampling had been turned off for the task).

RETURN VALUE

KERN_SUCCESS
PC sampling has been enabled/disabled.

KERN_INVALID_ARGUMENT
task reply_port or sample_taslare not valid

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

RELATED INFORMATION
Functionsmach_sample_thread

Mach 3 Kernel Interfaces 193

Task Interface

mach_task_self

SystemTrap — Returns the task self port

LIBRARY
#include smach/mach_traps.k»

SYNOPSIS

mach_port_tnach_task_self

0;

DESCRIPTION

Themach_task_selffunction returns send rights to the task’s own port.

The include file<mach_init.h> included by<mach.h> redefines this function
call to simply return the valumach_task_self, cached by the Mach run-time.

PARAMETERS
None

RETURN VALUE
Send rights to the task’s port.

RELATED INFORMATION
Functionstask_info.

194 Mach 3 Kernel Interfaces

task_create

task_create

Function — Creates a task

SYNOPSIS
kern_return_task_create
(mach_port_t parent_task,
boolean_t inherit_memory,
mach_port_t* child_task;

DESCRIPTION

The task_create function creates a new task frgmarent_taskand returns the
name of the new task ichild_task The child task acquires shared or copied
parts of the parent’s address space {seeinherit). The child task initially con-
tains no threads.

The child task receives the three following special ports, which are created or
copied for it at task creation:

task_kernel_port — The port by which the kernel knows the new child
task. The child task holds a send right for this port. The port name is also re-
turned to the calling task.

task_bootstrap_port — The port to which the child task can send a mes-
sage requesting return of any system service ports that it needs (for example,
a port to the Network Name Server or the Environment Manager). The child
task inherits a send right for this port from the parent task. The child task
can usdask_get_special_porto change this port.

task_exception_port— A default exception port for the child task, inherit-

ed from the parent task. The exception port is the port to which the kernel
sends exception messages. Exceptions are synchronous interruptions to the
normal flow of program control caused by the program itself. Some excep-
tions are handled transparently by the kernel, but others must be reported to
the program. The child task, or any one of its threads, can change the default
exception port to take an active role in exception handling (see
task_get_special_porborthread_get special_por}).

The child task inherits the PC sampling state of the parent.

PARAMETERS

parent_task
[in scalar] The task from which to draw the child task’s port rights, re-
source limits, and address space.

Mach 3 Kernel Interfaces 195

Task Interface

inherit_memory
[in scalar] Address space inheritance indicator. If true, the child task ip-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_task
[out scalar] The kernel-assigned name for the new task.

RETURN VALUE

KERN_SUCCESS
A new task has been created.

KERN_INVALID_ARGUMENT
parent_tasks not a valid task port.

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

RELATED INFORMATION

Functionstask get special_porttask _resumetask set special_porttask_-
suspend task terminate, task threads thread creatg thread resume
vm_inherit, mach_sample_task |

196 Mach 3 Kernel Interfaces

task_get_emulation_vector

task_get_emulation_vector

Function — Return user-level handlers for system calls.

SYNOPSIS
kern_return_task _get emulation_vector
(mach_port_t task,
int* vector_start
emulation_vector_t* emulation_vector,
mach_msg_type number_t* emulation_vector_coupt

DESCRIPTION

The task _get_emulation_vectorfunction returns the user-level syscall handler
entrypoint addresses.

PARAMETERS

task
[in scalar] The task for which the system call handler addresses are de-
sired.

vector_start
[out scalar] The syscall number corresponding to the first element of
emulation_vector

emulation_vector
[out pointer to dynamic array efn_offset JtPointer to the returned ar-
ray of routine entrypoints for the system calls starting with syscall
numbervector_start

emulation_vector_count
[out scalar] The number of entries filled by the kernel.

RETURN VALUE

KERN_SUCCESS
The emulation handler addresses were returned.

EML_BAD_TASK
taskis not a valid task.

RELATED INFORMATION
Functionstask set _emulationtask _set_emulation_vectar

Mach 3 Kernel Interfaces 197

Task Interface

task _get_special_port

Function — Returns a send right to a special port

SYNOPSIS
kern_return_task get_special_port
(mach_port_t task,
int which_port,
mach_port_t* special_por};

DESCRIPTION

The task_get_special_portfunction returns a send right for a special port be-
longing totask

The task kernel port is a port for which the kernel holds the receive right. The
kernel uses this port to identify the task.

If one task has a send right for the kernel port of another task, it can use the port
to perform kernel operations for the other task. Send rights for a kernel port nor-
mally are held only by the task to which the port belongs, or by the task’s parent
task. Using thenach_msgfunction, however, any task can pass a send right for
its kernel port to another task.

MACRO FORMS

task_get bootstrap_port
kern_return_task_get bootstrap_port

(mach_port_t task,
mach_port_t* special_port)

O task get special_por{task TASK_BOOTSTRAP_PORT,
special_port

task_get_exception_port
kern_return_task_get exception_port

(mach_port_t task,
mach_port_t* special_port)

O task get special_por{task TASK_EXCEPTION_PORT,
special_port

task_get_kernel_port
kern_return_task _get_kernel_port

(mach_port_t task,
mach_port_t* special_port)

O task get special_por{task TASK_KERNEL_PORT,
special_port

198 Mach 3 Kernel Interfaces

task_get_special_port

PARAMETERS

task
[in scalar] The task for which to return the port's send right.

which_port
[in scalar] The special port for which the send right is requested. Valid
values are:

TASK_KERNEL_PORT
The port used to name this task. Used to send messages that
affect the task.

TASK_BOOTSTRAP_PORT
The task’s bootstrap port. Used to send messages requesting
return of other system service ports.

TASK_EXCEPTION_PORT
The task’s exception port. Used to receive exception messages
from the kernel.

special_port
[out scalar] The returned value for the port.

RETURN VALUE

KERN_SUCCESS
The port was returned.

KERN_INVALID_ARGUMENT
taskis not a valid task awhich_portis not a valid port selector.

RELATED INFORMATION

Functions: mach_task_self task create task set special port thread -
get_special_portthread_set special_port

Mach 3 Kernel Interfaces 199

Task Interface

task_info

Function — Returns information about a task

SYNOPSIS
kern_return_task_info
(mach_port_t target_task,
int flavor,
task_info_t task _info,
mach_msg_type_number_t* task_infoCn;

DESCRIPTION
Thetask_info function returns an information array of tyftevor.

Fortask_infg the calling task or thread supplies an array of integers. On return,
task_infocontains the requested information.

Fortask_infoCntthe calling task or thread specifies the maximum number of in-
tegers intask_info On returntask_infoCntcontains the actual number of inte-
gers intask_info

Currently, TASK_BASIC_INFO and TASK_THREAD_TIMES_INFO are the
only types of information supported. Their sizes are defined by TASK BA-
SIC_INFO_COUNT and TASK_THREAD_TIMES_INFO_COUNT, respective-

ly.
PARAMETERS
target_task
[in scalar] The task for which the information is to be returned. |
flavor
[in scalar] The type of information to be returned. Valid values are: |
TASK_BASIC_INFO
Returns basic information about the task, such as the task’s
suspend count and number of resident pages.
TASK_THREAD_TIMES_INFO
Returns system and user space run-times for live threads.
task_info

[out array ofint] Information about the specified task. |

200 Mach 3 Kernel Interfaces

task_info

task_infoCnt
[pointer to in/out scalar] The size of the information structure. The

maximum size is defined by TASK_INFO_MAX. Currently, the only
valid values are TASK_BASIC_INFO_COUNT (for TASK_BA-
SIC_INFO) and TASK _THREAD_TIMES_INFO_COUNT (for
TASK_THREAD_TIMES_INFO).

RETURN VALUE

KERN_SUCCESS
The task information has been returned.

KERN_INVALID_ARGUMENT
target_taskis not a valid task ditavoris not a valid type.

MIG_ARRAY_TOO_LARGE
The returned array is too large taisk_info The function fillstask_in-
fo and setdask_infoCntto the number of elements that would have
been returned if there had been enough space.

RELATED INFORMATION

Functions: task_get special _port task_set_special_port task threads
thread_info, thread_get_statethread_set_state

Data Structuregask_basic_infq task_thread_times_infa

201

Mach 3 Kernel Interfaces

Task Interface

task_priority

Function — Sets the scheduling priority for a task

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_task_priority
(mach_port_t task,
int priority,
boolean_t change_threads

DESCRIPTION

Thetask_priority function sets the scheduling priority fsk The priority of

a task is used only when creating new threads. A new thread’s priority is set to
that of the enclosing task’s priority. Changing the priority of a task does not af-
fect the priority of the enclosed threads unlesange_threads TRUE. If this
priority change violates the maximum priority of some threads, as many threads
as possible will be changed and an error code will be returned.

PARAMETERS
task
[in scalar] The task whose scheduling priority is to be set. |
priority
[in scalar] The new priority for the task. |

change_threads
[in scalar] True if priority of existing threads within the task shoulq
also be changed.

RETURN VALUE

KERN_SUCCESS
The priority has been set.

KERN_INVALID_ARGUMENT
taskis not a valid task, or the priority value is out of range for priority
values.

202 Mach 3 Kernel Interfaces

task_priority

KERN_FAILURE
change_threadsvas TRUE and the attempt to change the priority of
some existing thread within the task failed because the new priority
would violate that thread’s maximum priority.

RELATED INFORMATION

Functionsthread_max_priority, thread_priority, processor_set_max_priori-
ty.

Mach 3 Kernel Interfaces 203

Task Interface

task_resume

Function — Resume a task

SYNOPSIS

kern_return_task _resume
(mach_port_t target_task

DESCRIPTION

Thetask_resumefunction decrements the suspend countdoget_task If the

task’s suspend count goes to zero, the function resumes any suspended threads
within the task. To resume a given thread, the thread’s own suspend count must
also be zero.

PARAMETERS

target_task
[in scalar] The task to be resumed. |

RETURN VALUE

KERN_SUCCESS
The task’s suspend count has been decremented.

KERN_FAILURE
The task’s suspend count is already at zero. A suspend count must be
either zero or positive.

KERN_INVALID_ARGUMENT
target_taskis not a valid task.

RELATED INFORMATION

Functions:task_create task_info, task_suspendtask_terminate, thread_in-
fo, thread_resume thread_suspend

204 Mach 3 Kernel Interfaces

task_set_emulation

task_set_emulation

Function — Establish a user-level handler for a system call.

SYNOPSIS
kern_return_task _set emulation
(mach_port_t task,
vm_address_t routine_entry_pt,
int syscall_numbeér

DESCRIPTION

Thetask set_emulationfunction establishes a handler within the task for a par-

ticular system call. When a thread executes a system call with this particular
number, the system call will be redirected to the specified routine within the
task’'s address space. This is expected to be an address within the transparent
emulation library.

These emulation handler addresses are inherited by child processes.

PARAMETERS

task
[in scalar] The task for which to establish the system call handler.

routine_entry_pt
[in scalar] The address within the task of the handler for this particular
system call.

syscall_number
[in scalar] The number of the system call to be handled by this handler.

RETURN VALUE

KERN_SUCCESS
The emulation handler was set.

EML_BAD_TASK
taskis not a valid task.

EML_BAD_CNT
syscall_numbeis not an allowed system call nhumber.

RELATED INFORMATION
Functionstask set _emulation_vectartask_get emulation_vector

Mach 3 Kernel Interfaces 205

Task Interface

task_set emulation_vector

Function — Establishes user-level handlers for system calls.

SYNOPSIS
kern_return_task set emulation_vector
(mach_port_t task,
int vector_start
emulation_vector_t emulation_vector,
mach_msg_type_number_t emulation_vector_coupt

DESCRIPTION

The task_set_emulation_vectorfunction establishes a handler within the task

for a set of system calls. When a thread executes a system call with one of these
numbers, the system call will be redirected to the corresponding routine within
the task’s address space. This is expected to be an address within the transparent
emulation library.

These emulation handler addresses are inherited by child processes.

PARAMETERS

task
[in scalar] The task for which to establish the system call handler. |

vector_start
[in scalar] The syscall number corresponding to the first elemembof |
ulation_vector

emulation_vector
[in pointer to array om_offset [tAn array of routine entrypoints for |
the system calls starting with syscall numbector_start

emulation_vector_count
[in scalar] The number of elementsemulation_vector |

RETURN VALUE

KERN_SUCCESS
The emulation handler was set.

EML_BAD_TASK
taskis not a valid task.

206 Mach 3 Kernel Interfaces

task_set_emulation_vector

EML_BAD_CNT
An element of the vector had a syscall number out of range.

RELATED INFORMATION
Functionstask_set emulationtask _get_emulation_vector

Mach 3 Kernel Interfaces 207

Task Interface

task_set special_port

Function — Sets a special port for a task

SYNOPSIS
kern_return_task_set special_port
(mach_port_t task,
int which_port,
mach_port_t special_por};

DESCRIPTION
Thetask _set _special_porfunction sets a special port belongingask

MACRO FORMS

task_set bootstrap_port
kern_return_task_set bootstrap port

(mach_port_t task,
mach_port_t special_port)

O task_set special_por{task TASK_BOOTSTRAP_PORT,
special_port

task_set_exception_port
kern_return_task set_exception_port

(mach_port_t task,
mach_port_t special_port

O task set special_por{task TASK_EXCEPTION_PORT,
special_por}.

task_set_kernel port
kern_return_task_set kernel port

(mach_port_t task,
mach_port_t special_port)
O task set special por{task TASK_KERNEL_PORT,
special_port
PARAMETERS
task

[in scalar] The task for which to set the port.

which_port
[in scalar] The special port to be set. Valid values are:

208 Mach 3 Kernel Interfaces

task_set_special_port

TASK_BOOTSTRAP_PORT
The task’s bootstrap port. Used to send messages requesting
return of other system service ports.

TASK_EXCEPTION_PORT
The task’s exception port. Used to receive exception messages
from the kernel.

TASK_KERNEL_PORT
The task’s kernel port. Used by the kernel to receive messages
from the task.

special_port
[in scalar] The value for the port.

RETURN VALUE

KERN_SUCCESS
The port was set.

KERN_INVALID_ARGUMENT
taskis not a valid task awhich_portis not a valid port selector.

RELATED INFORMATION

Functions:task_create task_get special_portexception_raise mach_task_-
self thread_get_special_portthread_set_special_port

Mach 3 Kernel Interfaces 209

Task Interface

task suspend

Function — Suspends a task

SYNOPSIS

kern_return_task_suspend
(mach_port_t target_task

DESCRIPTION

The task_suspendfunction increments the suspend count thimget_taskand

stops all threads within the task. As long as the suspend count is positive, no
newly-created threads can execute. The function does not return until all of the
task’s threads have been suspended.

To resume a suspended task and its threadstaskeresume If the suspend
count is greater than one, you must issisl_resumethat number of times.

PARAMETERS

target_task
[in scalar] The task to be suspended. |

RETURN VALUE

KERN_SUCCESS
The task has been suspended.

KERN_INVALID_ARGUMENT
target_taskis not a valid task.

RELATED INFORMATION

Functions:task create task_info, task_resume task_terminate, thread_sus-
pend.

210 Mach 3 Kernel Interfaces

task_terminate

task_terminate

Function — Destroys a task

SYNOPSIS

kern_return_task_terminate
(mach_port_t target_task

DESCRIPTION

Thetask_terminate function killstarget_taskand all its threads, if any. The ker-
nel frees all resources that are in use by the task. The kernel destroys any port
for which the task holds the receive right.

PARAMETERS

target_task
[in scalar] The task to be destroyed.

RETURN VALUE

KERN_SUCCESS
The task has been killed.

KERN_INVALID_ARGUMENT
target_taskis not a valid task.

RELATED INFORMATION

Functions: task create task suspend task resume thread_terminate,
thread_suspend

Mach 3 Kernel Interfaces 211

Task Interface

task_threads

Function — Returns a list of the threads within a task

SYNOPSIS
kern_return_task_threads
(mach_port_t target_task,
thread_array_t* thread_list,
mach_msg_type_number_t* thread_count

DESCRIPTION

The task_threads function returns a list of the threads witharget _task The
calling task or thread also receives a send right to the kernel port for each listed
thread.

PARAMETERS

target_task
[in scalar] The task for which the thread list is to be returned. |

thread_list
[out pointer to dynamic array dfiread_{ The returned list of threads |
within target_taskin no particular order.

thread_count
[out scalar] The returned count of threadthiread_list

RETURN VALUE

KERN_SUCCESS
The list of threads has been returned.

KERN_INVALID_ARGUMENT
target_taskis not a valid task.

RELATED INFORMATION

Functionsthread_create thread_terminate, thread_suspend

212 Mach 3 Kernel Interfaces

chapter s HoOsSt Interface

This chapter discusses the specifics of the kernel's host interfaces. Included are functions
that return status information for a host, such as kernel statistics.

Note that hosts are named both by a name port, which allows the holder to request infor-
mation about the host, and a control port, which provides full control access. The control
port for a host is provided to the bootstrap task for that host.

Mach 3 Kernel Interfaces 213

Host Interface

host_adjust_time

Function —Gradually change the time

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_tost_adjust_time
(mach_port_t host_priv,
time_value_t new_adjustment,
time_value_t* old_adjustment

DESCRIPTION

The host_adjust_timefunction arranges for the time on a specified host to be
gradually changed by an adjustment value.

PARAMETERS

host_priv
[in scalar] The control port the host for which the time is to be set. |

new_adjustment
[in structure] New adjustment value. |

old_adjustment
[out structure] Old adjustment value.

RETURN VALUE

KERN_SUCCESS
The time is being adjusted.

KERN_INVALID_HOST
The supplied host port is not the privileged host port.

RELATED INFORMATION

Functionshost_get_time host_set_time

Data Structuredime_value

214 Mach 3 Kernel Interfaces

host_get_boot_info

host_get_boot_info

Function — Return operator boot information

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_get boot_info
(mach_port_t priv_host,
kernel_boot_info_t boot_infg;

DESCRIPTION

The host_get_boot_infofunction returns the boot-time information string sup-
plied by the operator whepriv_hostwas initialized. The constant KERNEL _-
BOOT_INFO_MAX (in mach/host_info.) should be used to dimension
storage for the returned string.

PARAMETERS

priv_host
[in scalar] The control port for the host for which information is to be
obtained.

boot_info
[out array ofchar] Character string providing the operator boot info

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID _ARGUMENT
priv_hostis not a host control port.

KERN_INVALID_ADDRESS
versionpoints to inaccessible memory.

RELATED INFORMATION
Functionshost_info.

Mach 3 Kernel Interfaces 215

Host Interface

host_get time

Function —Return the current time.

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_tost_get time
(mach_port_t host,
time_value_t* current_time;

DESCRIPTION
Thehost_get_timefunction returns the current time as seen by that host.

PARAMETERS

host
[in scalar] The name port the host for which the time is to be set.

current_time
[out structure] Returned time value.

RETURN VALUE

KERN_SUCCESS
The current time is returned.

RELATED INFORMATION

Functionsthost_adjust_time host_set_time

Data Structuredime_value

216 Mach 3 Kernel Interfaces

host_info

host_info

Function — Returns information about a host

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_info
(mach_port_t host,
int flavor,
host_info_t host_info,
mach_msg_type _number_t* host_infoCn;

DESCRIPTION

The host_info function returns selected information about a host, as specified
by flavor. host_infois an array of integers that is supplied by the caller, and
filled with the specified informatiorhost_infoCntis supplied as the maximum
number of integers ihost_info On return, it contains the actual number of inte-
gers inhost_info

Basic information is defined by HOST_BASIC_INFO. Processor slots of the ac-
tive (available) processors are defined by HOST _PROCESSOR_SLOTS. Addi-
tional information of interest to schedulers is defined by HOST _LOAD_INFO
and HOST_SCHED_INFO.

PARAMETERS

host
[in scalar] The name port for the host for which information is to be ob-
tained.

flavor
[in scalar] The type of statistics desired. Currently, HOST_BASIC_IN-
FO, HOST_LOAD_INFO, HOST_PROCESSOR_SLOTS and
HOST_SCHED_INFO are defined.

host_info

[out array ofint] Statistics about the specified host. The relevant struc-
tures arehost_basic_info, host load_infoand host_sched _info In

the case of HOST_PROCESSOR_SLOTS, the return value is an array
of processor slot numbers for active processors.

Mach 3 Kernel Interfaces 217

Host Interface

host_infoCnt
[pointer to infout scalar] Size of the information structure, in units of
sizeof(int). This should be HOST_BASIC_INFO_COUNT (for
HOST_BASIC_INFO), HOST_SCHED_INFO_COUNT (for
HOST_SCHED_INFO), HOST_LOAD_INFO_COUNT (for HOST _-
LOAD_INFO) and the maximum number of CPUs reported by
HOST_BASIC_INFO (for HOST_PROCESSOR_SLOTS).

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
hostis not a host port dtavor is not recognized.

MIG_ARRAY_TOO_LARGE
Returned info array is too large ftwost info. host_infas filled as
much as possibléhost_infoCntis set to the number of elements that
would be returned if there were enough room.

RELATED INFORMATION

Functions: host_get_boot_info host_kernel_version, host_processors, pro- |
cessor_info

Data Structureshost_basic_info, host_load_info, host_sched_info

218 Mach 3 Kernel Interfaces

host_kernel_version

host_kernel_version

Function — Returns kernel version information for a host

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_kernel_version
(mach_port_t host,
kernel_version_t versior);

DESCRIPTION

The host_kernel_versionfunction returns the version string compiled into the
kernel executing omostat the time it was built. This describes the version of
the kernel. The constant KERNEL_VERSION_MAX (mach/host_info.h
should be used to dimension storage for the returned string Ketinel ver-
sion_tdeclaration is not used.

PARAMETERS

host
[in scalar] The name port for the host for which information is to be ob-
tained.

version
[out array ofchar] Character string describing the kernel version exe-
cuting onhost

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
hostis not a host port.

KERN_INVALID_ADDRESS
versionpoints to inaccessible memory.

RELATED INFORMATION
Functionshost_info, host_ports, host_processors, processor_info

Mach 3 Kernel Interfaces 219

Host Interface

host_reboot

Function — Reboot this host

LIBRARY
#include smach/mach_host.b
SYNOPSIS
kern_return_tost_reboot
(mach_port_t
int
DESCRIPTION
Thehost_rebootfunction reboots the specified host.

PARAMETERS

host_priv
[in scalar] The control port the host to be re-booted.

options

[in scalar] Reboot options. Sesys/reboot.h>for details.

NOTES
If successful, this call will not return.

RETURN VALUE

KERN_NO_ACCESS
The supplied host port is not the privileged host port.

host_priv,
options;

220 Mach 3 Kernel Interfaces

host_set_time

host_set_time

Function — Sets the time

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_set time
(mach_port_t host_priv,
time_value_t new_time;

DESCRIPTION
Thehost_set_timefunction establishes the time on the specified host.

PARAMETERS

host_priv
[in scalar] The control port for the host for which the time is to be set.

new_time
[in structure] Time to be set.

RETURN VALUE

KERN_SUCCESS
The time is set.

KERN_NO_ACCESS
The supplied host port is not the privileged host port.

RELATED INFORMATION
Functionshost_adjust_time host_get_time

Data Structuredime_value

Mach 3 Kernel Interfaces 221

Host Interface

mach_host_self

SystemTrap — Returns the host self port

LIBRARY
#include smach/mach_traps.k»

SYNOPSIS

mach_port_tnach_host_self

0;

DESCRIPTION
Themach_host_selfunction returns send rights to the current host's name port.

PARAMETERS
None

RETURN VALUE
Send rights to the host’s name port.

RELATED INFORMATION
Functionshost_info.

222 Mach 3 Kernel Interfaces

cHapTER 9 Processor Interface

This chapter discusses the specifics of the kernel’'s processor and processor set interfaces.
This includes functions to control processors, change their assignments, assign tasks and
threads to processors, and processor status returning functions.

Note that processor sets have two ports that name them: a name port which allows infor-
mation to be requested about them, and a control port which allows full access. The con-
trol port for a processor set is provided to the creator of the set.

Processors have only a single port that names them. The host control port is needed to ob-
tain these processor ports.

Mach 3 Kernel Interfaces 223

Processor Interface

host_processor_set_priv

Function — Returns a processor set control port for a host

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_tost_processor_set priv
(mach_port_t host_priv,
mach_port_t set_name,
mach_port_t* processor_sét

DESCRIPTION

The host_processor_set_privfunction returns send rights for the control port
for a specified processor set currently existindpast_priv

PARAMETERS
host_priv
[in scalar] The control port for the host for which the processor set |s
desired.
set_name
[in scalar] The name port for the processor set desired. |

processor_set
[out scalar] The returned processor set control port.

RETURN VALUE

KERN_SUCCESS
The port has been returned.

KERN_INVALID_ARGUMENT
host_privis not a valid host control port.

RELATED INFORMATION

Functions: host_processor_sets, processor_set_create, processor_set_tasks,
processor_set_threads

224 Mach 3 Kernel Interfaces

host_processor_sets

host_processor_sets

Function — Returns processor set ports for a host

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_processor_sets
(mach_port_t host,
processor_set_name_array_t* processor_set_list,
mach_msg_type _number_t* processor_set_count

DESCRIPTION

The host_processor_setgunction returns send rights for the name ports for
each processor set currently existinghost

PARAMETERS

host
[in scalar] The name port for the host for which the processor sets are
desired.

processor_set_list
[out pointer to dynamic array @rocessor_set_namé The set of pro-
cessor set name ports for those currently existingosh no particular
order is guaranteed.

processor_set_count
[out scalar] The number of processor sets returned.

NOTES
If control ports to the processor sets are neededjasteprocessor_set_priv
processor_set_lisis automatically allocated by the kernel, as if \oy_allo-

cate It is good practice tem_deallocatethis space when it is no longer need-
ed.

RETURN VALUE

KERN_SUCCESS
The ports have been returned.

Mach 3 Kernel Interfaces 225

Processor Interface

KERN_INVALID _ARGUMENT
hostis not a valid host.

RELATED INFORMATION

Functions: host_processor_set_priv, processor_set_create, processor_set_-
tasks, processor_set_threads

226 Mach 3 Kernel Interfaces

host_processors

host_processors

Function — Gets processor ports for a host

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_processors
(mach_port_t host_priv,
processor_array_t* processor_list,
mach_msg_type _number_t* processor_cout

DESCRIPTION

The host_processordunction returns an array of send right ports for each pro-
cessor existing ohost_priv

PARAMETERS

host_priv
[in scalar] The control port for the desired host.

processor_list
[out pointer to dynamic array g@rocessor JtThe set of processors ex-
isting onhost_priv no particular order is guaranteed.

processor_count
[out scalar] The number of ports returnegbincessor_list

RETURN VALUE

KERN_SUCCESS
The list of ports is returned.

KERN_INVALID_ARGUMENT
host_privis not a privileged host port.

KERN_INVALID_ADDRESS
processor_counpoints to invalid memory.

RELATED INFORMATION

Functions: processor_start, processor_exit, processor_info, processor_con-
trol .

Mach 3 Kernel Interfaces 227

Processor Interface

processor_assign

Function — Assign a processor to a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_assign
(mach_port_t processor,
mach_port_t new_set,
boolean_t wait);

DESCRIPTION

The processor_assigrfunction assigngrocessorto the senew_set After the
assignment is completed, the processor only executes threads that are assigned
to that processor set. Any previous assignment of the processor is nullified. The
master processor cannot be reassigned.

The wait argument indicates whether the caller should wait for the assignment
to be completed or should return immediately. Dedicated kernel threads are
used to perform processor assignment, so seitaigto FALSE allows assign-

ment requests to be queued and performed quicker, especially if the kernel has
more than one dedicated internal thread for processor assignment.

All processors take clock interrupts at all times. Redirection of other device in-
terrupts away from processors assigned to other than the default processor set is
machine dependent.

PARAMETERS

processor
[in scalar] The processor to be assigned. |

new_set
[in scalar] The control port for the processor set into which the procef-
sor is to be assigned.

wait
[in scalar] True if the call should wait for the completion of the assigr}
ment.

228 Mach 3 Kernel Interfaces

processor_assign

CAUTIONS

Intermediaries that interpose on ports must be sure to interpose on both ports in-
volved in the call if they interpose on either.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
processolis not a processor port, oew_seis not a processor set port
for the same host gsocessor.

RELATED INFORMATION

Functions processor_set_create, processor_set_info, task_assitimead_as-
sign.

Mach 3 Kernel Interfaces 229

Processor Interface

pI‘OCGSSOI’_COI’]tI’O|

Function — Do something to a processor

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_control
(mach_port_t processor,
processor_info_t cmd,
mach_msg_type number _t couny;

DESCRIPTION

The processor_controlfunction allows privileged software to control a proces-
sor in a multi-processor that so allows it. The interpretatiocrmaf is machine
dependent.

PARAMETERS

processor
[in scalar] The processor to be controlled. |

cmd

[pointer to in array ofnt] An array containing the command to be ap-|
plied to the processor.

count
[in scalar] The size of themdarray. |

NOTES

These operations are machine dependent. They may do nothing.

RETURN VALUE

KERN_SUCCESS
The operation was performed.

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

230 Mach 3 Kernel Interfaces

processor_control

KERN_INVALID_ARGUMENT
processolis not a processor port.

KERN_INVALID_ADDRESS
cmdpoints to inaccessible memory.

RELATED INFORMATION
Functions processor_start, processor_exit, processor_info, host_processors

Mach 3 Kernel Interfaces 231

Processor Interface

processor_exit

Function — Exit a processor

LIBRARY

#include smach/mach_host.b

SYNOPSIS

kern_return_processor_exit
(mach_port_t processay;

DESCRIPTION

The processor_exitfunction allows privileged software to exit a processor in a
multi-processor that so allows it. An exited processor is removed from the pro-
cessor set to which it was assigned and ceases to be active. The interpretation of
this operation is machine dependent.

PARAMETERS

processor
[in scalar] The processor to be controlled. |

NOTES
This operation is machine dependent. It may do nothing.

CAUTIONS
The ability to restart an exited processor is machine dependent.

RETURN VALUE

KERN_SUCCESS
The operation was performed.

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

KERN_INVALID_ARGUMENT
processolis not a processor port.

232 Mach 3 Kernel Interfaces

processor_exit

RELATED INFORMATION

Functions processor_control, processor_start, processor_info, host_proces-
sors

Mach 3 Kernel Interfaces 233

Processor Interface

processor_get_assignment

Function — Get current assignment for a processor

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_get_assignment
(mach_port_t processor,
mach_port_t* assigned_sgt

DESCRIPTION

The processor_get_assignmenrfunction returns the name port for the proces-
sor set to which a desired processor is currently assigned.

PARAMETERS

processor
[in scalar] The processor whose assignment is desired. |

new_set
[out scalar] The name port for the processor set to wimicbessoris
currently assigned.

RETURN VALUE

KERN_SUCCESS
The processor set name was returned.

KERN_INVALID_ARGUMENT
processolis not a processor port.

KERN_INVALID_ADDRESS
assigned_sgqtoints to inaccessible memory.

KERN_FAILURE
processois either shut down of off-line.

RELATED INFORMATION

Functions processor_assign, processor_set_create, processor_info, task_as-
sign, thread_assign |

234 Mach 3 Kernel Interfaces

processor_info

processor_info

Function — Returns information about a processor.

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_info
(mach_port_t processor,
int flavor,
mach_port_t* host,
processor_info_t processor_info,
mach_msg_type _number_t* processor_infoCnf

DESCRIPTION

The processor_infofunction returns selected information for a processor as an
array, as specified bijavor. processor_infas an array of integers that is sup-
plied by the caller, and filled with the specified informatipracessor_infoCnt

is supplied as the maximum number of integergrotessor_infoOn return, it
contains the actual number of integerpiiocessor_info

Basic information is defined by PROCESSOR_BASIC INFO. Additional infor-
mation is defined by machine-dependent valudmobr.

PARAMETERS

processor
[in scalar] A processor port for which information is desired.

flavor

[in scalar] The type of information requested. Currently, only PRO-
CESSOR_BASIC_INFO is defined.

host
[out scalar] The host on which the processor resides. This is the host
name port.

processor_info
[out array ofint] Information about the processor.

processor_infoCnt
[pointer to in/out scalar] Size of the info structure, in units of
sizeof(int). This should be PROCESSOR_BASIC_INFO_COUNT (for
PROCESSOR_BASIC_INFO).

Mach 3 Kernel Interfaces 235

Processor Interface

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
processolis not a processor port, flavoris not recognized.

MIG_ARRAY_TOO_LARGE
Returned info array is too large fprocessor_info. processor_infe
filled as much as possiblprocessor_infoCnis set to the number of el-
ements that would be returned if there were enough room.

RELATED INFORMATION

Functions processor_start, processor_exit, processor_control, host_proces-
sors.

Data Structuregprocessor_basic_info.

236 Mach 3 Kernel Interfaces

processor_set_create

processor_set_create

Function — Creates a new processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_create
(mach_port_t host,
mach_port_t* new_set,
mach_port_t* new_namg

DESCRIPTION

The processor_set_creatéunction creates a new processor set and returns the
two ports associated with it. The port returnedéw_sets the control port rep-
resenting the set. It is used to perform operations such as assigning processors,
tasks or threads. The port returnechew_namas the name port which identi-

fies the set, and is used to obtain information about the set.

PARAMETERS

host
[in scalar] The name port for the host on which the set is to be created.

new_set
[out scalar] Control port used for performing operations on the new set.

new_name

[out scalar] Name port used to identify the new set and obtain informa-
tion about it.

RETURN VALUE

KERN_SUCCESS
The set was created.

KERN_INVALID_ARGUMENT
hostis not a host port.

KERN_INVALID_ADDRESS
new_setind/ornew_nameoint to inaccessible memory.

Mach 3 Kernel Interfaces 237

Processor Interface

RELATED INFORMATION

Functions processor_set _destroy, processor_set info, processor_assign,
task_assignthread_assign

238 Mach 3 Kernel Interfaces

processor_set_default

processor_set default

Function — Returns the default processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_default
(mach_port_t host,
mach_port_t* default_set

DESCRIPTION

The processor_set_defaulfunction returns the name port for the default pro-
cessor set for the specified host. The default processor set is used by all threads,
tasks and processors that are not explicitly assigned to other sets. The port re-
turned can be used to obtain information about this set (such as how many
threads are assigned to it). It cannot be used to perform operations on the set.

PARAMETERS

host
[in scalar] The name port for the host for which the default processor
set is desired.

default_set
[out scalar] The returned name port for the default processor set.

RETURN VALUE

KERN_SUCCESS
The default set has been returned.

KERN_INVALID_ARGUMENT
hostwas not a host.

KERN_INVALID_ADDRESS
default_sepoints to inaccessible memory.

RELATED INFORMATION
Functions processor_set_info, thread_assign, task_assign

Mach 3 Kernel Interfaces 239

Processor Interface

processor_set_destroy

Function — Destroys a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS

kern_return_processor_set_destroy
(mach_port_t processor_sét

DESCRIPTION

The processor_set_destrofunction destroys the specified processor set. Any
assigned processors, tasks or threads are re-assigned to the default set. The ob-
ject port (not the name port) for the processor set is required.

PARAMETERS

processor_set
[in scalar] The control port for the processor set to be destroyed. |

RETURN VALUE

KERN_SUCCESS
The set was destroyed.

KERN_FAILURE
An attempt was made to destroy the default processor set.

KERN_INVALID_ARGUMENT
processor_seis not a processor set control port.

RELATED INFORMATION

Functions processor_set_create, processor_assign, task_assithread_as-
sign.

240 Mach 3 Kernel Interfaces

processor_set_info

processor_set_info

Function — Returns information about a processor set.

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_info
(mach_port_t processor_set,
int flavor,
mach_port_t* host,
processor_set_info_t processor_set_info,
mach_msg_type _number_t* infoCn;

DESCRIPTION

The processor_set_infofunction returns selected information for a processor
set as an array, as specifiedflayor. processor_set_infs an array of integers
that is supplied by the caller, and filled with the specified informatdoCntis
supplied as the maximum number of integerprivcessor_set_infdOn return,

it contains the actual number of integerpiacessor_set_info

Basic information is defined by PROCESSOR_SET_BASIC_INFO. Scheduling
information is given by PROCESSOR_SET_SCHED_INFO.

PARAMETERS

processor_set
[in scalar] A processor set name or control port for which information

is desired.

flavor
[in scalar] The type of information requested. Currently, PROCES-
SOR_SET_BASIC_INFO and PROCESSOR_SET_SCHED_INFO are
defined.

host

[out scalar] The name port for the host on which the processor resides.

processor_set_info
[out array ofint] Information about the processor set.

infoCnt
[pointer to in/out scalar] Size of the info structure, in units of
sizeof(int). This should be PROCESSOR_SET_BASIC_INFO_-

Mach 3 Kernel Interfaces 241

Processor Interface

COUNT (for PROCESSOR_SET_BASIC_INFO) and PROCESSOR_-
SET_SCHED_INFO_COUNT (for PROCESSOR_SCHED_INFO).

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
processor_sek not a processor set port,favoris not recognized.

MIG_ARRAY_TOO_LARGE
Returned info array is too large fprocessor_set_info. processor_set_-
info is filled as much as possiblefoCntis set to the number of ele-
ments that would be returned if there were enough room.

RELATED INFORMATION

Functions processor_set create, processor_set default, processor_assign,
task_assignthread_assign

Data Structuregprocessor_set_basic_infgrocessor_set_sched_info.

242 Mach 3 Kernel Interfaces

processor_set_max_priority

processor_set_max_priority

Function — Sets the maximum scheduling priority for a processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_max_priority
(mach_port_t processor_set,
int priority,
boolean_t change_threads

DESCRIPTION

Theprocessor_set_max_priorityfunction sets the maximum scheduling priori-

ty for processor_setThe maximum priority of a processor set is used only
when creating new threads. A new thread’s maximum priority is set to that of its
assigned processor set. When assigned to a processor set, a thread’s maximum
priority is reduced, if necessary, to that of its new processor set; its current prior-
ity is also reduced, as needed. Changing the maximum priority of a processor
set does not affect the priority of the currently assigned threads unless
change_threadss TRUE. If this priority change violates the maximum priority

of some threads, their maximum priorities will be reduced to match.

PARAMETERS

processor_set
[in scalar] The control port for the processor set whose maximum
scheduling priority is to be set.

priority
[in scalar] The new priority for the processor set.

change_threads

[in scalar] True if the maximum priority of existing threads assigned to
this processor set should also be changed.

RETURN VALUE

KERN_SUCCESS
The priority has been set.

Mach 3 Kernel Interfaces 243

Processor Interface

KERN_INVALID _ARGUMENT
processor_ses not a valid processor set, or the priority value is out of
range for priority values.

RELATED INFORMATION
Functionsthread_max_priority, thread_priority, thread_assign.

244 Mach 3 Kernel Interfaces

processor_set_policy_disable

processor_set policy_disable

Function — Disables a scheduling policy for a processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_policy disable
(mach_port_t processor_set,
int policy,
boolean_t change_threads

DESCRIPTION

The processor_set_policy disabléunction restricts the set of scheduling poli-

cies allowed foprocessor_sefThe set of scheduling policies allowed for a pro-
cessor set is the set of policies allowed to be set for threads assigned to that
processor set. The current set of permitted policies can be obtainepréroes-
sor_set_infa Timesharing may not be forbidden for any processor set. This is a
compromise to reduce the complexity of the assign operation; any thread whose
policy is forbidden by its target processor set has its policy reset to timesharing.
Disabling a scheduling policy for a processor set has no effect on threads cur-
rently assigned to that processor set unbdssge_threadss TRUE, in which

case their policies will be reset to timesharing.

PARAMETERS

processor_set
[in scalar] The control port for the processor set for which a scheduling
policy is to be disabled.

policy
[in scalar] Policy to be disabled. The values currently defined are POLI-
CY_TIMESHARE and POLICY_FIXEDPRI.

change_threads

[in scalar] If true, causes the scheduling policy for all threads currently
running withpolicy to POLICY_TIMESHARE.

RETURN VALUE

KERN_SUCCESS
The policy has been disabled.

Mach 3 Kernel Interfaces 245

Processor Interface

KERN_INVALID _ARGUMENT
processor_seis not a valid processor set, molicy is not a recognized
scheduling policy value, or an attempt was made to disable timesharing.

RELATED INFORMATION
Functions;processor_set policy_enable, thread_policy

246 Mach 3 Kernel Interfaces

processor_set_policy_enable

processor_set policy_enable

Function — Enables a scheduling policy for a processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_policy enable
(mach_port_t processor_set,
int policy);

DESCRIPTION

The processor_set_policy_enabléunction extends the set of scheduling poli-
cies allowed foprocessor_sefThe set of scheduling policies allowed for a pro-
cessor set is the set of policies allowed to be set for threads assigned to that
processor set. The current set of permitted policies can be obtainepréroes-
sor_set_infa

PARAMETERS

processor_set
[in scalar] The control port for the processor set for which a scheduling
policy is to be enabled.

policy
[in scalar] Policy to be enabled. The values currently defined are POLI-
CY_TIMESHARE and POLICY_FIXEDPRI.

RETURN VALUE

KERN_SUCCESS
The policy has been enabled.

KERN_INVALID_ARGUMENT
processor_seis not a valid processor set, molicy is not a recognized
scheduling policy value.

RELATED INFORMATION
Functions;processor_set policy_disable, thread_policy

Mach 3 Kernel Interfaces 247

Processor Interface

processor_set_tasks

Function — Returns a list of tasks assigned to a processor set

LIBRARY

#include smach/mach_host.b

SYNOPSIS
kern_return_processor_set_tasks
(mach_port_t processor_set,
task_array_t* task_list,
mach_msg_type_number_t* task_courjt

DESCRIPTION

The processor_set _taskgunction returns send rights to the kernel ports for
each task currently assignedpitmcessor_set

PARAMETERS

processor_set
[in scalar] A processor set control port for which information is desireq.

task_list
[out pointer to dynamic array ¢dsk_{ The returned set of ports nam- |
ing the tasks currently assignedptocessor_set

task_count
[out scalar] The number of tasks returnethbisk_list

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
processor_seis not a processor set port.

RELATED INFORMATION

Functions processor_set_threads, task_assigthread_assign

248 Mach 3 Kernel Interfaces

processor_set_threads

processor_set threads

Function — Returns a list of threads assigned to a processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_threads
(mach_port_t processor_set,
thread_array_t* thread_list,
mach_msg_type _number_t* thread_count

DESCRIPTION

The processor_set_threadsunction returns send rights to the kernel ports for
each thread currently assignegtocessor_set

PARAMETERS

processor_set
[in scalar] A processor set control port for which information is desired.

thread_list
[out pointer to dynamic array dhread_{ The returned set of ports
naming the threads currently assigne@racessor_set

thread_count
[out scalar] The number of threads returnethirad_list

RETURN VALUE

KERN_SUCCESS
The information has been returned.

KERN_INVALID_ARGUMENT
processor_sds not a processor set port.

RELATED INFORMATION
Functions processor_set_tasks, task_assigtinread_assign

Mach 3 Kernel Interfaces 249

Processor Interface

processor_start

Function — Start a processor

LIBRARY
#include smach/mach_host.b

SYNOPSIS

kern_return_processor_start
(mach_port_t processay;

DESCRIPTION

The processor_startfunction allows privileged software to start a processor in
a multi-processor that so allows it. A newly started processor is assigned to the
default processor set. The interpretation of this operation is machine dependent.

PARAMETERS

processor
[in scalar] The processor to be controlled. |

NOTES
This operation is machine dependent. It may do nothing.

CAUTIONS
The ability to restart an exited processor is machine dependent.

RETURN VALUE

KERN_SUCCESS
The operation was performed.

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

KERN_INVALID_ARGUMENT
processolis not a processor port.

250 Mach 3 Kernel Interfaces

processor_start

RELATED INFORMATION

Functions processor_control, processor_exit, processor_info, host_proces-
sors

Mach 3 Kernel Interfaces 251

Processor Interface

task_assign

Function — Assign a task to a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_task_assign
(mach_port_t task,
mach_port_t processor_set,
boolean_t assign_threads

DESCRIPTION

Thetask assignfunction assignsaskto the seprocessor_setAfter the assign-
ment is completed, newly created threads within this task will be assigned to
this processor set. Any previous assignment of the task is nullified.

If assign_threadss TRUE, existing threads within the task will also be assigned
to the processor set.

PARAMETERS

task
[in scalar] The task to be assigned. |

processor_set

[in scalar] The control port for the processor set into which the task s
to be assigned.

assign_threads

[in scalar] True if this assignment should apply as well to the threagis
within the task.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT

taskis not a task port, gprocessor_seis not a processor set port for
the same host dask.

252 Mach 3 Kernel Interfaces

task_assign

RELATED INFORMATION

Functions task_assign_default, task_get_assignment, processor_set_create,
processor_set_infoprocessor_assignthread_assign

Mach 3 Kernel Interfaces 253

Processor Interface

task assign_default

Function — Assign a task to the default processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_task_assign_default
(mach_port_t task,
boolean_t assign_threads

DESCRIPTION

Thetask assign_defaultfunction assignsaskto the default processor set. Af-
ter the assignment is completed, newly created threads within this task will be
assigned to this processor set. Any previous assignment of the task is nullified.

If assign_threadss TRUE, existing threads within the task will also be assigned
to the processor set.

This variant oftask_assignexists because the control port for the default pro-
cessor set is privileged, and therefore not available to most tasks.

PARAMETERS

task
[in scalar] The task to be assigned. |

assign_threads
[in scalar] True if this assignment should apply as well to the threagis
within the task.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
taskis not a task port.

RELATED INFORMATION

Functions task_assign, task_get_assignment, processor_set_create, proces-
sor_set_info, thread_assignprocessor_assign

254 Mach 3 Kernel Interfaces

task_get_assignment

task_get_assignment

Function — Returns the processor set to which a task is assigned

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_task_get assignment
(mach_port_t task,
mach_port_t* processor_sét

DESCRIPTION

Thetask get assignmentunction returns the name port to the processor set to
which taskis currently assigned. This port can only be used to obtain informa-
tion about the processor set.

PARAMETERS

task
[in scalar] The task whose assignment is desired.

processor_set
[out scalar] The name port for the processor set into which the task is
assigned.

RETURN VALUE

KERN_SUCCESS
The assigned set was returned.

KERN_INVALID_ARGUMENT
taskis not a task port.

KERN_INVALID_ADDRESS
processor_sgboints to inaccessible memory.

RELATED INFORMATION

Functions task assign, task assign_default, processor_set create, proces-
sor_set_info, thread_assignprocessor_assign

Mach 3 Kernel Interfaces 255

Processor Interface

thread_assign

Function — Assign a thread to a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_thread_assign
(mach_port_t thread,
mach_port_t processor_sét

DESCRIPTION

Thethread_assignfunction assignthreadto the seprocessor_setAfter the as-
signment is completed, the thread executes only on processors that are assigned
to that processor set. Any previous assignment of the thread is nullified.

PARAMETERS

thread
[in scalar] The thread to be assigned. |

processor_set
[in scalar] The name port for the processor set into which the thread]is
to be assigned.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
threadis not a thread port, grocessor_seis not a processor set port
for the same host disread.

RELATED INFORMATION

Functions thread_assign_default, thread_get_assignment, processor_set -
create, processor_set_info, task_assigprocessor_assign

256 Mach 3 Kernel Interfaces

thread_assign_default

thread_assign_default

Function — Assign a thread to the default processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS

kern_return_thread_assign_default
(mach_port_t thread);

DESCRIPTION

Thethread_assign_defaultfunction assignshreadto the default processor set.
After the assignment is completed, the thread executes only on processors that
are assigned to that processor set. Any previous assignment of the thread is nulli-
fied. This variant othread_assignexists because the control port for the de-
fault processor set is privileged, and therefore not available to most tasks.

PARAMETERS

thread
[in scalar] The thread to be assigned.

RETURN VALUE

KERN_SUCCESS
The assignment was performed.

KERN_INVALID_ARGUMENT
threadis not a thread port.

RELATED INFORMATION

Functions thread_assign, thread_get assignment, processor_set create,
processor_set_info, task_assigprocessor_assign

Mach 3 Kernel Interfaces 257

Processor Interface

thread_get_assignment

Function — Returns the processor set to which a thread is assigned

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_thread_get_assignment
(mach_port_t thread,
mach_port_t* processor_sét

DESCRIPTION

Thethread_get_assignmentunction returns the name port to the processor set
to whichthreadis currently assigned. This port can only be used to obtain infor-
mation about the processor set.

PARAMETERS

thread
[in scalar] The thread whose assignment is desired. |

processor_set
[out scalar] The name port for the processor set into which the thread
is assigned.

RETURN VALUE

KERN_SUCCESS
The assigned set was returned.

KERN_INVALID_ARGUMENT
threadis not a thread port.

KERN_INVALID_ADDRESS
processor_sepoints to inaccessible memory.

RELATED INFORMATION

Functions thread_assign, thread_assign_default, processor_set create, pro-
cessor_set_info, task_assigprocessor_assign

258 Mach 3 Kernel Interfaces

cHaPTER 10 Device Interface

This chapter discusses the specifics of the kernel's device interfaces. These interfaces pro-
vide read, write and status interfaces to devices.

Mach 3 Kernel Interfaces 259

Device Interface

device close

Function — De-establish a connection to a device.

LIBRARY

#include <device/device.k

SYNOPSIS

kern_return_tlevice_close
(mach_port_t devicé;

DESCRIPTION

The device_closégunction decrements the open count for the named device. If
this count reaches zero, the close operation of the device driver is invoked, clos-
ing the device.

PARAMETERS

device
[in scalar] A device port to the device to be closed. |

RETURN VALUE

D_SUCCESS
Device was closed.

D_NO_SUCH_DEVICE
devicedoes not name a device port.

RELATED INFORMATION

Functionsdevice_open

260 Mach 3 Kernel Interfaces

device_get_status

device_get_status

Function — Return the current device status

LIBRARY
#include <device/device.kr

SYNOPSIS
kern_return_tlevice_get_status
(mach_port_t device,
int flavor,
dev_status t status,
mach_msg_type _number_t* status_count

DESCRIPTION

Thedevice_get_statugunction returns status information pertaining to an open
device. The possible values fitavor as well as the meaning of the returned sta-
tus information is device dependent.

PARAMETERS

device
[in scalar] A device port to the device to be interrogated.

flavor
[in scalar] The type of status information requested.

status
[out array ofint] The returned device status.

status_count

[pointer to infout scalar] On input, the reserved sizstafus on out-
put, the size of the returned device status.

RETURN VALUE

D_SUCCESS
Status was returned.

D_NO_SUCH_DEVICE
Device is not open or operational.

Mach 3 Kernel Interfaces 261

Device Interface

RELATED INFORMATION
Functionsdevice_set_status

262 Mach 3 Kernel Interfaces

device_map

device_map

Function — Establish a memory manager representing a device

LIBRARY
#include <device/device.kr

SYNOPSIS
kern_return_tlevice_map
(mach_port_t device,
vm_prot_t prot,
vm_offset_t offset,
vm_size t size,
mach_port_t* pager,
int unmap;

DESCRIPTION

Thedevice_mapfunction establishes a memory manager that presents a memo-
ry object representing a device. The resulting port is suitable for use as the pag-
er port in asrm_map call. This call is device dependent.

PARAMETERS

device
[in scalar] A device port to the device to be mapped.

prot
[in scalar] Protection for the device memaory.
offset
[in scalar] An offset within the device memory object, in bytes.
size
[in scalar] The size of the device memory object.
pager
[out scalar] The returned abstract memory object port to a memory
manager that represents the device.
unmap
[in scalar] Currently unused.
NOTES

Port rights are maintained as follows:

Mach 3 Kernel Interfaces 263

Device Interface

Abstract memory object port:
The device pager has all rights.

Memory cache control port:
The device pager has only send rights.

Memory cache name port:
The device pager has only send rights. The name port is not even re-
corded.

Regardless how the object is created, the control and name ports are created by
the kernel and passed through the memory management interface.

CAUTIONS

The device pager assumes that access to its memory objects will not be propa-
gated to more that one host, and therefore provides no consistency guarantees
beyond those made by the kernel.

In the event that more than one host attempts to use a device memory object, the
device pager will only record the last set of port names. [This can happen with
only one host if a new mapping is being established while termination of all pre-
vious mappings is taking place.] Currently, the device pager assumes that its cli-
ents adhere to the initialization and termination protocols in the memory
management interface; otherwise, port rights or out-of-line memory from erro-
neous messages may be allowed to accumulate.

RETURN VALUE

KERN_SUCCESS
The device map is established.

D_NO_SUCH_DEVICE
The device is not open or not operational.

RELATED INFORMATION

Functionsvm_map, evc_wait

264 Mach 3 Kernel Interfaces

device_open

device_open

Function — Establish a connection to a device.
LIBRARY

#include <evice/device.k (device_opei

#include <evice/device requesth (device_open_request

#include <evice/device reply.l (ds_device_open_reply

SYNOPSIS
kern_return_tlevice_open
(mach_port_t master_port,
dev_mode t mode,
dev_name _t name,
mach_port_t* device);

DESCRIPTION

The device_openfunction opens a device object. The open operation of the de-
vice is invoked, if the device is not already open. The open count for the device
is incremented.

ASYNCHRONOUS FORM

device_open_request
Function — Asynchronously request a connection to a device

kern_return_tlevice_open_request

(mach_port_t master_port,
mach_port_t reply_port,
dev_mode t mode,
dev_name _t name;

ds_device_open_reply
Server Interface — Receive the reply from an asynchronous open

kern_return_tls_device _open_reply

(mach_port_t reply_port,
kern_return_t return_code,
mach_port_t device);

Mach 3 Kernel Interfaces 265

Device Interface

PARAMETERS

master_port
[in scalar] The master device port. This port is provided to the bog}-
strap task.

reply_port
[in scalar] The port to which a reply is to be sent when the device s

open.
mode

[in scalar] Opening mode. This is the bit-wise OR of the following val]
ues:

D_READ
Read access

D_WRITE
Write access

D_NODELAY
Do not delay on open

name
[pointer to in array o€har] Name of the device to open. |

return_code
[in scalar] Status of the open. |

device
[out scalar] The returned device port.

RETURN VALUE

D_SUCCESS
Device was opened.

D_INVALID_OPERATION
master_poris not the master device port.

D_WOULD_BLOCK
The device is busy, but D_NOWAIT was specifiedniaode

D_ALREADY_OPEN
The device is already open in a mode incompatible mitbe

D_NO_SUCH_DEVICE
namedoes not name a known device.

266 Mach 3 Kernel Interfaces

device_open

D_DEVICE_DOWN
The device has been shut down.

KERN_SUCCESS
Returned fordevice_open_requestor ds_device_open_reply since
these functions do not receive a reply message and have no return val-
ue. Only message transmission errors apply.

RELATED INFORMATION
Functionsdevice_closedevice_reply_server

Mach 3 Kernel Interfaces 267

Device Interface

device read

Function — Read a sequence of bytes from a device object.
LIBRARY

#include <device/device.k (device_read

#include <device/device_requesth (device_read_request

#include <device/device_reply.bk (ds_device_read_reply

SYNOPSIS
kern_return_tlevice read

(mach_port_t device,
dev_mode t mode,
recnum_t recnum,
int bytes wanted,
io_buf_ptr_t* data,
mach_msg_type_number_t* data_coun

DESCRIPTION

The device_readfunction reads a sequence of bytes from a device object. The
meaning ofrecnumas well as the specific operation performed is device depen-
dent.

ASYNCHRONOUS FORM

device_read_request
Function — Asynchronously read data

kern_return_tlevice _read_request

(mach_port_t device,
mach_port_t reply_port,
dev_mode _t mode,
recnum_t recnum,
int bytes wantex]

ds_device_read_reply
Server Interface — Receive the reply from an asynchronous read

kern_return_tls_device_read_reply

(mach_port_t reply_port,
kern_return_t return_code,
io_buf_ptr_t data,
mach_msg_type_number_t data_coun

268 Mach 3 Kernel Interfaces

device_read

PARAMETERS

device
[in scalar] A device port to the device to be read.

reply_port
[in scalar] The port to which the reply message is to be sent.

mode
[in scalar] I/0O mode value. Meaningful options are:

D_NOWAIT
Do not wait if data is unavailable.

recnum
[in scalar] Record number to be read.

bytes wanted
[in scalar] Size of data transfer.

return_code
[in scalar] The return status code from the read.

data
[out pointer to dynamic array of bytes] Returned data bytes.

data_count
[out scalar] Number of returned data bytes.

RETURN VALUE

D_SUCCESS
Data was read.

D_NO_SUCH_DEVICE
The device is dead or not completely open.

KERN_SUCCESS
Returned fordevice read_requestor ds_device_read_reply since
these functions do not receive a reply message and have no return val-
ue. Only message transmission errors apply.

RELATED INFORMATION
Functionsdevice_read_inbanddevice_reply server

Mach 3 Kernel Interfaces 269

Device Interface

device read_inband

Function — Read a sequence of bytes “inband” from a device object.

LIBRARY

#include <device/device.k (device_read_inband

#include <device/device_requesth (device_read_request_inbang

#include <device/device_reply.b (ds_device_read_reply_inbanyl

SYNOPSIS

kern_return_tevice_read_inband

DESCRIPTION

(mach_port_t device,
dev_mode t mode,
recnum_t recnum,
int bytes wanted,
io_buf _ptr_inband_t* data,
mach_msg_type_number_t* data_coun

The device_readfunction reads a sequence of bytes from a device object. The
meaning ofrecnumas well as the specific operation performed is device depen-
dent. This call differs frondevice readin that the returned bytes are returned
“inband” in the reply IPC message.

ASYNCHRONOUS FORM
device_read_request_inband

Function — Asynchronously read data

kern_return_tlevice _read_request_inband

(mach_port_t device,
mach_port_t reply_port,
dev_mode t mode,
recnum_t recnum,
int bytes wantex]

ds_device read_reply_inband

Server Interface — Receive the reply from an asynchronous read

kern_return_tls_device read_reply_inband

(mach_port_t reply_port,
kern_return_t return_code,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_coun

270

Mach 3 Kernel Interfaces

device_read_inband

PARAMETERS

device
[in scalar] A device port to the device to be read.

reply_port
[in scalar] The port to which the reply message is to be sent.

mode
[in scalar] I/0O mode value. Meaningful options are:

D_NOWAIT
Do not wait if data is unavailable.

recnum
[in scalar] Record number to be read.

bytes wanted
[in scalar] Size of data transfer.

return_code
[in scalar] The return status code from the read.

data
[out array of bytes] Returned data bytes.

data_count
[out scalar] Number of returned data bytes.

RETURN VALUE

D_SUCCESS
Data was read.

D_NO_SUCH_DEVICE
The device is dead or not completely open.

KERN_SUCCESS
Returned for device_read request inband or ds_device -
read_reply_inband, since these functions do not receive a reply mes-
sage and have no return value. Only message transmission errors apply.

RELATED INFORMATION
Functionsdevice_readdevice_reply_server

Mach 3 Kernel Interfaces 271

Device Interface

device_set_filter

Function — Names an input filter for a device

LIBRARY

#include <device/device.k

#include <device/net_status.bk

SYNOPSIS

kern_return_tlevice_set _filter
(mach_port_t device,
mach_port_t receive_port,
mach_msg_type _name_t receive_port_type,
int priority,
filter_array_t filter,
mach_msg_type_number_t filter_couny;

DESCRIPTION

Thedevice_set filterfunction provides a means by which selected data appear-
ing at a device interface can be selected and routed to a port.

The filter command list consists of an array of up to NET_MAX_FILTER (un-
signed short) words to be applied to incoming messages to determine if those
messages should be given to a particular input filter.

Each filter command list specifies a sequences of actions which leave a boolean
value on the top of an internal stack. Each word of the command list specifies a
data (push) operation (high order NETF_NBPO bits) as well as a binary opera-

tor (low order NETF_NBPA bits).

The value to be pushed onto the stack is chosen as follows.

NETF_PUSHLIT
Use the next short word of the filter as the value.

NETF_PUSHZERO
Use 0 as the value.

NETF_PUSHWORDN
Use short wordN of the “data” portion of the message as the value.

NETF_PUSHHDRN
Use short wordN of the “header” portion of the message as the value.

272

Mach 3 Kernel Interfaces

device_set _filter

NETF_PUSHIND-N
Pops the top long word from the stack and then uses shortNvofd
the “data” portion of the message as the value.

NETF_PUSHHDRINDN
Pops the top long word from the stack and then uses shortNvofd
the “header” portion of the message as the value.

NETF_PUSHSTKN
Use long wordN of the stack (where the top of stack is long word 0) as
the value.

NETF_NOPUSH
Don’t push a value.

The unsigned value so chosen is promoted to a long word before being pushed.

Once a value is pushed (except for the case of NETF_NOPUSH), the top two
long words of the stack are popped and a binary operator applied to them (with
the old top of stack as the second operand). The result of the operator is pushed
on the stack. These operators are:

NETF_NOP
Don’t pop off any values and do no operation.

NETF_EQ
Perform an equal comparison.

NETF_LT
Perform a less than comparison.

NETF_LE
Perform a less than or equal comparison.

NETF_GT
Perform a greater than comparison.

NETF_GE
Perform a greater than or equal comparison.

NETF_AND
Perform a bit-wise boolean AND operation.

NETF_OR
Perform a bit-wise boolean inclusive OR operation.

NETF_XOR
Perform a bit-wise boolean exclusive OR operation.

Mach 3 Kernel Interfaces 273

Device Interface

NETF_NEQ
Perform a not equal comparison.

NETF_LSH
Perform a left shift operation.

NETF_RSH
Perform a right shift operation.

NETF_ADD
Perform an addition.

NETF_SUB
Perform a subtraction.

NETF_COR
Perform an equal comparison. If the comparison is TRUE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

NETF_CAND
Perform an equal comparison. If the comparison is FALSE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

NETF_CNOR
Perform a not equal comparison. If the comparison is FALSE, termi-
nate the filter list. Otherwise, pop the result of the comparison off the
stack.

NETF_CNAND
Perform a not equal comparison. If the comparison is TRUE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

The scan of the filter list terminates when the filter list is emptied, or a NET-
F_C... operation terminates the list. At this time, if the final value of the top of
the stack is TRUE, then the message is accepted for the filter.

PARAMETERS

device
[in scalar] A device port |

receive_port
[in scalar] The port to receive the input data that is selected by the filtgr.

receive_port_type
[in scalar] IPC type of the send right provided to the device; eithgr
MACH_MSG_TYPE_MAKE_SEND or MACH_MSG_TYPE_-
MOVE_SEND.

274 Mach 3 Kernel Interfaces

device_set _filter

priority
[in scalar] Used to order multiple receivers.

filter
[pointer to in array ofilter_t] The address of an array of filter values.

filter_count
[in scalar] The size of thidter array.

RETURN VALUE

D_SUCCESS
Device filter set.

D_NO_SUCH_DEVICE
Device is not open or operational.

D_INVALID_OPERATION
No receive_portwas supplied.

Mach 3 Kernel Interfaces 275

Device Interface

device_set_status

Function — Sets device status.

LIBRARY

#include <device/device.k

SYNOPSIS
kern_return_tlevice_set status
(mach_port_t device,
int flavor,
dev_status t status,
mach_msg_type_number_t status_count

DESCRIPTION

Thedevice_set_statugunction sets device status. The possible valuékawdr
as well as the corresponding meanings are device dependent.

PARAMETERS

device
[in scalar] A device port to the device to be manipulated.

flavor
[in scalar] The type of status information to set.

status
[pointer to in array oint] The status information to set.

status_count
[in scalar] The size of the status information.

RETURN VALUE

D_SUCCESS
Device status was set.

D_NO_SUCH_DEVICE
The device is not open or operational.

RELATED INFORMATION

Functionsdevice_get_status

276 Mach 3 Kernel Interfaces

device_write

device_write

Function — Write a sequence of bytes to a device object.
LIBRARY

#include <evice/device.k (device_write)

#include <evice/device requesth (device_ write_requesy

#include <evice/device reply.br (ds_device write_reply

SYNOPSIS
kern_return_tlevice write
(mach_port_t device,
dev_mode t mode,
recnum_t recnum,
io_buf ptr_t data,
mach_msg_type _number _t data_count,
int* bytes_writteiy

DESCRIPTION

The device_write function writes a sequence of bytes to a device object. The
meaning ofrecnumas well as the specific operation performed is device depen-
dent.

ASYNCHRONOUS FORM

device_write_request
Function — Asynchronously write data

kern_return_tlevice write_request

(mach_port_t device,
mach_port_t reply_port,
dev_mode t mode,
recnum_t recnum,
io_buf ptr_t data,
mach_msg_type _number _t data_coung

ds_device_write_reply
Server Interface — Receive the reply from an asynchronous write

kern_return_tls_device write_reply

(mach_port_t reply_port,
kern_return_t return_code,
int bytes writteiy

Mach 3 Kernel Interfaces 277

Device Interface

PARAMETERS

device

[in scalar] A device port to the device to be written. |
reply_port

[in scalar] The port to which the reply message is to be sent. |
mode

[in scalar] I/O mode value. Meaningful options are: |

D_NOWAIT

Do not wait for I/O completion.

recnum

[in scalar] Record number to be written. |
data

[pointer to in array of bytes] Data bytes to be written. |
data_count

[in scalar] Number of data bytes to be written. |

return_code
[in scalar] The return status code from the write. |

bytes written
[out scalar] Size of data transfer.

RETURN VALUE

D_SUCCESS
Data was written.

D_NO_SUCH_DEVICE
The device is dead or not completely open.

KERN_SUCCESS
Returned fordevice_write_requestor ds_device_write_reply since
these functions do not receive a reply message and have no return val-
ue. Only message transmission errors apply.

RELATED INFORMATION

Functionsdevice_write_inband device_reply_server

278 Mach 3 Kernel Interfaces

device_write_inband

device_write_inband

Function — Write a sequence of bytes “inband” to a device object.
LIBRARY

#include <evice/device.l (device_write_inband

#include <evice/device requesth (device_write_request_inbandl

#include <evice/device reply.l (ds_device_write_reply_inband

SYNOPSIS
kern_return_tlevice write_inband
(mach_port_t device,
dev_mode t mode,
recnum_t recnum,
io_buf_ptr_inband_t data,
mach_msg_type _number _t data_count,
int* bytes_writteiy

DESCRIPTION

The device_write function writes a sequence of bytes to a device object. The
meaning ofrecnumas well as the specific operation performed is device depen-
dent. This call differs frondevice_write in that the bytes to be written are sent
“inband” in the request IPC message.

ASYNCHRONOUS FORM

device_write_request_inband
Function — Asynchronously write data

kern_return_tlevice_write_request_inband

(mach_port_t device,
mach_port_t reply_port,
dev_mode t mode,
recnum_t recnum,
io_buf_ptr_inband_t data,
mach_msg_type _number _t data_coung

ds_device_write_reply_inband
Server Interface — Receive the reply from an asynchronous write

kern_return_tls_device write_reply_inband

(mach_port_t reply_port,
kern_return_t return_code,
int bytes_writteiy

Mach 3 Kernel Interfaces 279

Device Interface

PARAMETERS

device

[in scalar] A device port to the device to be written. |
reply_port

[in scalar] The port to which the reply message is to be sent. |
mode

[in scalar] I/O mode value. Meaningful options are: |

D_NOWAIT

Do not wait for I/O completion.

recnum

[in scalar] Record number to be written. |
data

[pointer to in array of bytes] Data bytes to be written. |
data_count

[in scalar] Number of data bytes to be written. |

return_code
[in scalar] The return status code from the write. |

bytes written
[out scalar] Size of data transfer.

RETURN VALUE

D_SUCCESS
Data was written.

D_NO_SUCH_DEVICE
The device is dead or not completely open.

KERN_SUCCESS
Returned fordevice_write_request_inbandor ds_device_write_re-
ply_inband, since these functions do not receive a reply message and
have no return value. Only message transmission errors apply.

RELATED INFORMATION

Functionsdevice_write device_reply_server

280 Mach 3 Kernel Interfaces

aprenpix o MIG Server Routines

This appendix describes server message de-multiplexing routines generated by MIG
from the kernel interface definitions of use to a server in handling messages sent from the
kernel.

Mach 3 Kernel Interfaces 281

MIG Server Routines

device_reply_server

Function — Handles messages from a kernel device driver

LIBRARY

libmach_sa.alibmach.a

Not declared anywhere.

SYNOPSIS
boolean_device_reply_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;

DESCRIPTION

The device_reply_serverfunction is the MIG generated server handling func-

tion to handle messages from kernel device drivers. Such messages were sent in
response to the variowdevice ... request. calls. It is assumed when using
those calls that some task is listening for reply messages on the port named as a
reply port to those calls. Traevice_reply_serverfunction performs all neces-

sary argument handling for a kernel message and calls one of the device server
functions to interpret the message.

PARAMETERS

in_msg
[pointer to in structure] The device driver message received from tije
kernel.

out_msg
[out structure] A reply message. No messages from a device driver ¢x-
pect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this device handler interface and no other
action was taken.

282 Mach 3 Kernel Interfaces

device_reply_server

RELATED INFORMATION

Functions: ds_device_open_reply ds_device_write_reply ds_device_writ-
e_reply_inband ds_device_read_replyds device_read_reply_inband

Mach 3 Kernel Interfaces 283

MIG Server Routines

exc_server

Function — Handles kernel messages for an exception handler

LIBRARY

libmach_sa.alibmach.a

Not declared anywhere.

SYNOPSIS
boolean_exc_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;

DESCRIPTION

The exc_serverfunction is the MIG generated server handling function to han-
dle messages from the kernel relating to the occurrence of an exception in a
thread. Such messages are delivered to the exception port siiread_-
set_special_portor task set special_port When an exception occurs in a
thread, the thread sends an exception message to its exception port, blocking in
the kernel waiting for the receipt of a reply. Tdév_serverfunction performs

all necessary argument handling for this kernel message andatahs excep-
tion_raise, which should handle the exception.clitch_exception_raisere-

turns KERN_SUCCESS, a reply message will be sent, allowing the thread to
continue from the point of the exception; otherwise, no reply message is sent
andcatch_exception_raisanmust have dealt with the exception thread directly.

PARAMETERS
in_msg
[pointer to in structure] The exception message received from the kér-
nel.
out_msg
[out structure] A reply message. |

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the exception mechanism and no other
action was taken.

284 Mach 3 Kernel Interfaces

exc_server

RELATED INFORMATION

Functions: thread_set special_port task_set special_port catch_excep-
tion_raise.

Mach 3 Kernel Interfaces 285

MIG Server Routines

memory_object_default_server

Function — Handles kernel messages for the default memory manager

LIBRARY

libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_tmemory_object _default_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;

DESCRIPTION

Thememory_object_default_serverfunction is the MIG generated server han-
dling function to handle messages from the kernel targeted to the default memo-
ry manager. This server function only handles messages unique to the default
memory manager. Messages that are common to all memory managers are han-
dled bymemory_object_server

A memory manageis a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
memory_object_default_serverfunction performs all necessary argument han-
dling for a kernel message and calls one of the default memory manager func-
tions.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received frgm
the kernel.

out_msg

[out structure] A reply message. No messages to a memory manaper
expect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

286 Mach 3 Kernel Interfaces

memory_object_default_server

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION

Functions: seqnos_memory_object_default_servermemory_object_server
memory_object_create memory_object_data_initialize

Mach 3 Kernel Interfaces 287

MIG Server Routines

memory_object_server

Function — Handles kernel messages for a memory manager

LIBRARY

libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_tmemory_object_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;

DESCRIPTION

The memory_object_server function is the MIG generated server handling
function to handle messages from the kernel targeted to a memory manager.

A memory manageis a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
memory_object_serverfunction performs all necessary argument handling for

a kernel message and calls one of the memory manager functions to interpret
the message.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received frgm
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manaper
expect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

288 Mach 3 Kernel Interfaces

memory_object_server

RELATED INFORMATION

Functions:memory_object_default_servermemory_object_copy memory_-
object_data_request memory_object_data_unlock memory_object_-
data_write, memory_object_data_return, memory_object_init,
memory_object_lock_completedmemory_object_change_completednem-
ory_object_terminate, seqnos_memory_object_server

Mach 3 Kernel Interfaces 289

MIG Server Routines

notify _server

Function — Handle kernel generated IPC notifications

LIBRARY

libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_notify_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;

DESCRIPTION

The notify_server function is the MIG generated server handling function to
handle messages from the kernel corresponding to IPC notifications. Such mes-
sages are delivered to the notification port namediraeh_msgor mach_por-
t_request_natification call. Thenotify _server function performs all necessary
argument handling for this kernel message and calls the appropriate handling
function. These functions must be supplied by the caller.

PARAMETERS
in_msg
[pointer to in structure] The notification message received from the ker-
nel.
out_msg
[out structure] Not used. |
NOTES

The user of this function must also supply a dummy rowtmenach_notify -
port_deleted, which will never be called, but which is defined as part of Mach
2.5 IPC compatibility.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

290 Mach 3 Kernel Interfaces

notify_server

FALSE
The message did not apply to the notification mechanism and no other
action was taken.

RELATED INFORMATION

Functions: segnos_notify_server mach_msg mach_port_request_notifica-
tion, do_mach_notify_dead_name do_mach_notify_msg_accepted
do_mach_notify_no_sendersdo_mach_notify_port_deleted do_mach_noti-
fy_port_destroyed do_mach_notify_send_once

Mach 3 Kernel Interfaces 291

MIG Server Routines

segnos_memory_object_default_server

Function — Handles kernel messages for the default memory manager

LIBRARY

libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_seqgnos_memory_object_default_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;

DESCRIPTION

The segnos_memory_object_default_servefunction is the MIG generated
server handling function to handle messages from the kernel targeted to the de-
fault memory manager. This server function only handles messages unique to
the default memory manager. Messages that are common to all memory manag-
ers are handled Isegnos_memory_object_server

A memory manageis a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kerneteThe
gnos_memory_object_default_serverfunction performs all necessary argu-
ment handling for a kernel message and calls one of the default memory
manager functions.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received frgm
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manaper
expect a direct reply, so this field is not used.

NOTES

seqnos_memory_object_default_serverdiffers from memory_object de-
fault_server in that it supplies message sequence numbers to the server interfac-
es it calls.

292 Mach 3 Kernel Interfaces

seqnos_memory_object_default_server

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION

Functions: memory_object_default_server seqnos_memory_object_server
seqnos_memory_object_creajsegnos_memory_object_data_initialize

Mach 3 Kernel Interfaces 293

MIG Server Routines

segnos_memory_object_server

Function — Handles kernel messages for a memory manager

LIBRARY

libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_segnos_memory_object_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;

DESCRIPTION

Thesegnos_memory_object_servefunction is the MIG generated server han-
dling function to handle messages from the kernel targeted to a memory manag-
er.

A memory manageis a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kerneteThe
gnos_memory_object_serverfunction performs all necessary argument han-
dling for a kernel message and calls one of the memory manager functions to
interpret the message.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received frgm
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manaper
expect a direct reply, so this field is not used.

NOTES

seqnos_memory_object_servediffers frommemory_object_serverin that it
supplies message sequence numbers to the server interfaces.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

294 Mach 3 Kernel Interfaces

seqnos_memory_object_server

FALSE
The message did not apply to this memory management interface and

no other action was taken.

RELATED INFORMATION

Functionsseqnos_memory_object_default_serveseqnos_memory_object_-
copy, seqnos_memory_object_data_request seqgnos_memory_object da-

ta_unlock, segnos_memory_object_data_write
seqnos_memory_object_data_returnsegnos_memory_object_initsegnos_-
memory_object_lock_completed seqgnos_seqnos_memory_ob-
ject_change_completed seqnos_memory_object_terminate

memory_object_server

295

Mach 3 Kernel Interfaces

MIG Server Routines

seqgnos_notify _server

Function — Handle kernel generated IPC notifications

LIBRARY

libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_seqgnos_notify server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;

DESCRIPTION

The segnos_notify_serveifunction is the MIG generated server handling func-
tion to handle messages from the kernel corresponding to IPC notifications.
Such messages are delivered to the notification port namedhacta msgor
mach_port_request_notificationcall. Theseqgnos_notify serverfunction per-

forms all necessary argument handling for this kernel message and calls the ap-
propriate handling function. These functions must be supplied by the caller.

PARAMETERS
in_msg
[pointer to in structure] The notification message received from the ker-
nel.
out_msg
[out structure] Not used. |
NOTES

seqnos_notify _servediffers fromnotify_server in that it supplies message se-
guence numbers to the server interfaces.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the notification mechanism and no other
action was taken.

296 Mach 3 Kernel Interfaces

seqnos_notify_server

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_noatification,
do_seqgnos_mach_notify _dead_namelo_seqgnos_mach_notify_msg_accept-
ed, do_seqgnos_mach_notify_no_senderslo_seqnos_mach_notify _port_de-
leted, do_seqgnos_mach_notify _port_destroyed
do_segnos_mach_notify_send_once

Mach 3 Kernel Interfaces 297

MIG Server Routines

298 Mach 3 Kernel Interfaces

APPENDIX B Multicomputer Support

Support for multicomputers is being added to the Mach kernel. This provides transparent
support for distributed, non-shared-memory environments. The current support does not
handle node failures and so is suitable to multicomputer environments but not yet to net-
worked workstation environments.

With this support, a single logical Mach kernel is formed that spans a set of computers.
The entire set acts as one Mach host. Each actual computer (possibly a multiprocessor)
in the set, referred to asnade is referenced by an integer node number within the con-
taining “host”.

This appendix describes operations that apply to individual nodes in such a configuration.

Mach 3 Kernel Interfaces 299

Multicomputer Support

norma_get_special_port

Function — Returns a send right to a node specific port

LIBRARY

libmach_sa.alibmach.a

#include smach/norma_special_ports.k

SYNOPSIS
kern_return_torma_get_special_port
(mach_port_t host_priv,
int node,
int which_port,
mach_port_t* special_port)

DESCRIPTION

Thenorma_get_special_portfunction returns a send right for a special port be-
longing tonodeon host_priv

Each node maintains a (small) set of node specific ports. The device master
port, host paging port, host name and host control port are maintained by the
kernel. The kernel also permits a small set of server specified node specific
ports; the name server port is an example and is given (by convention) an as-
signed special port index.

MACRO FORMS

norma_get_device_ port
kern_return_torma_get _device_port

(mach_port_t host_priv,
int node
mach_port_t* special_port)

0 norma_get_special_portthost_priy node
NORMA_DEVICE_PORTgspecial_por}t

norma_get_host_paging_port
kern_return_torma_get_host_paging_port

(mach_port_t host_priv,
int node
mach_port_t* special_port)

0 norma_get_special_portthost_priy node
NORMA_HOST_PAGING_PORTspecial_por}

Mach 3 Kernel Interfaces

norma_get_special_port

norma_get_host_port
kern_return_torma_get _host_port

(mach_port_t host_priv,
int node
mach_port_t* special_port)

O norma_get_special_port(host_priv node
NORMA_HOST_PORTspecial_port

norma_get_host_priv_port
kern_return_torma_get_host_priv_port

(mach_port_t host_priv,
int node
mach_port_t* special_port)

O norma_get_special_port(host_priv node
NORMA_HOST_PRIV_PORTspecial_por}

norma_get_nameserver_port
kern_return_horma_get_nameserver_port

(mach_port_t host_priv,
int node
mach_port_t* special_port)

O norma_get_special_porthost_priyv node
NORMA_NAMESERVER_PORTspecial_port

PARAMETERS

host_priv
[in scalar] The control port for the host for which to return the special
port's send right.

node
[in scalar] The index of the node for which the port is desired.

which_port
[in scalar] The index of the special port for which the send right is re-
guested. Valid values are:

NORMA_DEVICE_PORT
The device master port for the node.

NORMA_HOST_PAGING_PORT
The default pager port for the node.

NORMA_HOST_PORT
The host name port for the node. If the specified node is the
current node, this value (unless otherwise set) is the same as
would be returned bgnach_host_self

Mach 3 Kernel Interfaces 301

Multicomputer Support

NORMA_HOST_PRIV_PORT
The host control port for the node.

NORMA_NAMESERVER_PORT
The registered name server port for the node.

special_port
[out scalar] The returned value for the port.

RETURN VALUE

KERN_SUCCESS
The port was returned.

KERN_INVALID_ARGUMENT
host_privis not a valid hostodeis not a valid node awvhich_portis
not a valid port selector.

RELATED INFORMATION

Functions:mach_host_selfnorma_set_special_portvm_set default_memo-
ry_manager.

302 Mach 3 Kernel Interfaces

norma_port_location_hint

norma_port_location_hint

Function — Guess a port’s current location

LIBRARY
libmach_sa.g libmach.a

Not declared anywhere.

SYNOPSIS
kern_return_horma_port_location_hint
(mach_port_t task,
mach_port_t port,
int* node)

DESCRIPTION

Thenorma_port_location_hint function returns the best guesspofit's current
location. The hint is guaranteed to be a node where the port once was; it is guar-
anteed to be accurate if port has never moved. This can be used to determine res-
idence node for hosts, tasks, threads, etc.

PARAMETERS

task
[in scalar] Task reference (not currently used)

port
[in scalar] Send right to the port to locate.

node
[out scalar] Port location hint

RETURN VALUE

KERN_SUCCESS
A hint was returned.

KERN_INVALID_ARGUMENT
port is not a valid port.

RELATED INFORMATION
Functionstask set child_nodenorma_task create

Mach 3 Kernel Interfaces 303

Multicomputer Support

norma_set_special_port

Function — Sets a node specific special port

LIBRARY

libmach_sa.alibmach.a

#include smach/norma_special_ports.k

SYNOPSIS
kern_return_torma_set_special_port
(mach_port_t host_priv,
int node,
int which_port,
mach_port_t special_port)
DESCRIPTION
The norma_set_special_portfunction sets the special port belongingntme
onhost_priv

Each node maintains a (small) set of node specific ports. The device master
port, host paging port, host name and host control port are maintained by the
kernel. The kernel also permits a small set of server specified node specific
ports; the name server port is an example and is given (by convention) an as-
signed special port index.

MACRO FORMS

norma_set _device_port
kern_return_torma_set_device port

(mach_port_t host_priv, |
int node
mach_port_t special_port)

0 norma_set_special_porihost_priy node |

NORMA_DEVICE_PORTgspecial_por}t

norma_set _host_paging_port
kern_return_torma_set_host_paging_port

(mach_port_t host_priv,
int node
mach_port_t special_port)

0 norma_set_special_porihost_priy node
NORMA_HOST_PAGING_PORTspecial_por}

304 Mach 3 Kernel Interfaces

norma_set_special_port

norma_set_host_port
kern_return_torma_set_host_port

(mach_port_t host_priv,
int node
mach_port_t special_port)

O norma_set_special_pori{host_privnode
NORMA_HOST_PORTspecial_port

norma_set_host_priv_port
kern_return_torma_set_host_priv_port

(mach_port_t host_priv,
int node
mach_port_t special_port)

O norma_set_special_pori{host_privnode
NORMA_HOST_PRIV_PORTspecial_por}

norma_set_nameserver_port
kern_return_horma_set_nameserver_port

(mach_port_t host_priv,
int node
mach_port_t special_port)

O norma_set_special_pori{host_privnode
NORMA_NAMESERVER_PORTspecial_port

PARAMETERS

host_priv
[in scalar] The host for which to set the special port. Currently, this
must be the per-node host control port.

node
[in scalar] The index of the node for which the port is to be set.

which_port
[in scalar] The index of the special port to be set. Valid values are:

NORMA_DEVICE_PORT
The device master port for the node.

NORMA_HOST_PAGING_PORT
The default pager port for the node.

NORMA_HOST_PORT
The host name port for the node.

NORMA_HOST_PRIV_PORT
The host control port for the node.

Mach 3 Kernel Interfaces 305

Multicomputer Support

NORMA_NAMESERVER_PORT
The registered name server port for the node.

special_port
[in scalar] A send right to the new special port.

RETURN VALUE

KERN_SUCCESS
The port was set.

KERN_INVALID_ARGUMENT
host_privis not a valid hostyodeis not a valid node awhich_portis |
not a valid port selector.

RELATED INFORMATION

Functions:mach_host_selfnorma_get_special_portvm_set_default_memo- |
ry_manager.

306 Mach 3 Kernel Interfaces

norma_task_create

norma_task_create

Function — Create a task on a specified node

LIBRARY
libmach_sa.g libmach.a

Not declared anywhere.

SYNOPSIS
kern_return_horma_task_create
(mach_port_t parent_task,
boolean_t inherit_memory
int child_node
mach_port_t* child_task)

DESCRIPTION

The norma_task_createfunction creates a new task frgmarent_taskon the
specifiednode and returns the name of the new taslclild_task The child

task acquires shared or copied parts of the parent’s address spaom (see
herit). The child task initially contains no threads. The new task inherits the PC
sampling status of its parent.

By way of comparison, tasks created by the stantieskl createprimitive are
created on the node last set tagk set child_node(by default theparent_-
tasks node).

The child task receives the three following special ports, which are created or
copied for it at task creation:

task_kernel_port — The port by which the kernel knows the new child
task. The child task holds a send right for this port. The port name is also re-
turned to the calling task.

task_bootstrap_port — The port to which the child task can send a mes-
sage requesting return of any system service ports that it needs (for example,
a port to the Network Name Server or the Environment Manager). The child
task inherits a send right for this port from the parent task. The child task
can usdask_get_special_porto change this port.

task_exception_port— A default exception port for the child task, inherit-

ed from the parent task. The exception port is the port to which the kernel
sends exception messages. Exceptions are synchronous interruptions to the
normal flow of program control caused by the program itself. Some excep-
tions are handled transparently by the kernel, but others must be reported to
the program. The child task, or any one of its threads, can change the default

Mach 3 Kernel Interfaces 307

Multicomputer Support

exception port to take an active role in exception handling (see
task_get_special_porborthread_get special _por}.

PARAMETERS

parent_task
[in scalar] The task from which to draw the child task’s port rights, re-
source limits, and address space.

inherit_memory
[in scalar] Address space inheritance indicator. If true, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_node
[in scalar] The node index of the node on which to create the child.

child_task
[out scalar] The kernel-assigned name for the new task.

RETURN VALUE

KERN_SUCCESS
A new task has been created.

KERN_INVALID_ARGUMENT
parent_tasks not a valid task port.

KERN_RESOURCE_SHORTAGE
Some critical kernel resource is unavailable.

RELATED INFORMATION

Functionstask_set child_nodetask_create

308 Mach 3 Kernel Interfaces

task_set_child_node

task_set_child_node

Function — Set the node upon which future child tasks will be created

LIBRARY
libmach_sa.g libmach.a

Not declared anywhere.

SYNOPSIS
kern_return_task_set child_node
(mach_port_t task,
int child_node)

DESCRIPTION

Thetask_set_child_nodédunction specifies a node upon which child tasks will
be created. This call exists only to allow testing with unmodified servers. Server
developers should usmrma_task_createinstead.

PARAMETERS

task
[in scalar] The task who's children are to be affected.

node

[in scalar] The index of the node upon which future children should be
created.

RETURN VALUE

KERN_SUCCESS
The node was set.

KERN_INVALID_ARGUMENT
taskis not a valid task.

RELATED INFORMATION

Functions:norma_task_create

Mach 3 Kernel Interfaces 309

Multicomputer Support

310 Mach 3 Kernel Interfaces

aprenpix ¢ INtel 386 SUppOI’t

This appendix describes special kernel interfaces to support the special hardware features
of the Intel 386 processor and its successors.

Aside from the special functions listed here, the Intel 386 support also includes special
thread state “flavors” (Sewach/thread_status.h).

i386_ THREAD_STATE—Basic machine thread state, except for segment and float-
ing registers.

i386_ REGS _SEGS_STATE—Same as i386_ THREAD_STATE but also sets/gets seg-
ment registers.

i386_FLOAT_STATE—Floating point registers.
i386_V86_ASSIST_STATE—Virtual 8086 interrupt table.

(The i386_ISA_PORT_MAP_STATE flavor shown imach/thread_status.hhas been
disabled.)

IO Permission Bitmap

The 386 supports direct 10O instructions. Generally speaking, these instructions are privi-
leged (sensitive to IOPL). Mach, in combination with the processor, allows threads to di-
rectly execute these instructions against hardware 10 ports for which the thread has
permission (those named in its IO permission bitmap). (Note that this is a per-thread
property.) Thé386_io_port_addfunction enables 10 to the port corresponding to the de-
vice port supplied to the calB86_io_port_removedisables such IG386_io_port_list

lists the devices to which 10 is permitted.

For the sake of supporting the DOS emulator, the kernel supports a specialiagvice
Access to this device implies access to the speaker, configuration CMOS, game port,

Mach 3 Kernel Interfaces 311

Intel 386 Support

sound blaster, printer and the VGA ports (de\Wd® or vga). Attempting to execute an
IO instruction against one of these devices when the task holds send rightepd tlee
vice automatically adds these devices to the 10 permission bitmap.

Virtual 8086 Support

Virtual 8086 mode is supported by Mach, enabled when the EFL_VM (virtual machine)
flag in the thread stateeflis set. The various instructions sensitive to IOPL are simulat-
ed by the Mach kernel. This includes simulating an interrupt enabled flag and associated
instructions.

A virtual 8086 task receives simulated 8086 interrupts by setting an interrupt descriptor
table (in task space). This table is set with the i386_V86_ASSIST_ STATE status flavor.

[1] structi386_v86 assist state

2] {
[3] unsigned int int_table
[4] int int_count
[5] %

[6] #define i386_V86_ASSIST_STATE_COUNT
(sizeof (struct386_v86_assist_stajésizeof(unsigned int))

Theint_tablefield points to an interrupt table in task space. The tabléinhasounten-
tries. Each entry of this table has the format shown below.

[1] structv86_interrupt_table

[2] {

[3] unsigned int count
[4] unsigned short mask
[5] unsigned short veg
6] %

When the 8086 task has an associated interrupt table and its simulated interrupt efable
flag is set, the kernel will scan the table looking for an entry wbogetis greater than

zero and whosenaskvalue is not set. If found, the count will be decremented and the
task will take a simulated 8086 interrupt to the address giveretNo other simulated
interrupts will be generated until the 8086 task executésaimstruction and the (simu-

lated) interrupt enable flag is again set. The generation of the simulated interrupt will
turn off the hardware’s trace trap flag; executingitbeinstruction will restore the trace

trap flag.

Local Descriptor Table

Although the 386 (and successors) view the address space as segmented, Mach provides
each task with a linear address space (32 bits for the Intel family). The various entries in
the system global descriptor table (GDT) are used for system use; in general the entries
map all of kernel memory. The thread’s local descriptor table (LDT) maps its task space.
Segment 2 of this table is used for task code accesses (it permits only read access); seg-
ment 3 is used for data accesses (it permits write access, subject to page level protec-
tions); both segments, though, map all of the task’s address space. Segment 1 of the table
is unused. Segment 0 is used as a call gate for system calls (traps).

312 Mach 3 Kernel Interfaces

Each thread may set entries in its LDT to describe various ranges of its underlying ad-
dress space. There is no way that this mechanism permits a thread to access any more vir-
tual memory than its address space permits; these LDT segment entries merely provide
different views of the address space. A segment may be thought of as an automatically re-
located portion of the address space; the beginning of a segment can be referenced as ad-
dress zero given the appropriately set 386 segment register. These local segment
descriptors are manipulated with tli@86_set |dt function and examined with the
i386_get_ldtfunction.

Mach 3 Kernel Interfaces 313

Intel 386 Support

1386_get Idt

Function — Return per-thread segment descriptors

LIBRARY

libmach_sa.alibmach.a

#include smach/i386/mach_i386.h

SYNOPSIS

[1] structdescriptor

[2] {

[3] unsigned int low_word

[4] unsigned int high_word

5] k

[6] typedef struct descriptor descriptor_t;

[7] typedef struct descriptor* descriptor_list_t;

kern_return_{386_get_Idt

(mach_port_t thread,
int first_selectoyr
int desired_count
descriptor_list_t* desc_list
mach_msg_type _number_t* returned_count)

DESCRIPTION

The i386_get_|dt function returns per-thread segment descriptors from the
thread’s local descriptor table (LDT).

PARAMETERS

thread
[in scalar] Thread whose segment descriptors are to be returned

first_selector
[in scalar] Selector value (segment register value) corresponding to the
first segment whose descriptor is to be returned

desired_count
[in scalar] Number of returned descriptors desired

desc_list
[unbounded out in-line array discriptor_t Array of segment descrip-
tors. The reserved size of this array is supplied as the input valge for
turned_count

314 Mach 3 Kernel Interfaces

i386_get_Idt

returned_count
[pointer to in/out scalar] On input, the reserved size of the descriptor ar-
ray; on output, the number of descriptors returned

RETURN VALUE

KERN_SUCCESS
Descriptors returned

KERN_INVALID_ARGUMENT
Invalid threador selector value out of range.

RELATED INFORMATION
Functionsi386_set_Idt

Mach 3 Kernel Interfaces 315

Intel 386 Support

1386 _io_port_add

Function — Permit 10 instructions to be performed against a device

LIBRARY

libmach_sa.alibmach.a

#include smach/i386/mach_i386.h

SYNOPSIS
kern_return_t386_io_port_add
(mach_port_t thread,
mach_port_t device)

DESCRIPTION

Thei386_io_port_addfunction adds a device to the 10 permission bitmap for a
thread, thereby permitting the thread to execute 10 instructions against the de-
vice.

PARAMETERS

thread
[in scalar] Thread whose permission bitmap is to be set.

device
[in scalar] The device to which 10 instructions are to be permitted.

NOTES

Normally, the thread must have callé@B6 io_port_add for all devices to
which it will execute 10 instructions. However, possessing send rights to the
iopl device port will cause th@pl device to be automatically added to the
thread’s 10 map upon first attempted access. This is a backward compatibility
feature for the DOS emulator.

RETURN VALUE

KERN_SUCCESS
The device was added to the 10 permission bitmap.

KERN_INVALID_ARGUMENT
threador devicewere not valid.

316 Mach 3 Kernel Interfaces

i386_io_port_add

RELATED INFORMATION
Functions:i386_io_port_list i386_io_port_remove

Mach 3 Kernel Interfaces 317

Intel 386 Support

1386 _io_port_list

Function — List devices permitting 10

LIBRARY

libmach_sa.alibmach.a

#include smach/i386/mach_i386.h

SYNOPSIS
kern_return_t386 io_port_list
(mach_port_t thread,
device_list_t* list,
mach_msg_type_number_t* count)

DESCRIPTION

The i386_io_port_list function returns a list of the devices named in the
thread’s 10 permission bitmap, namely those permitting 1O instructions to be ex-
ecuted against them.

PARAMETERS

thread
[in scalar] Thread whose permission list is to be returned

list
[out pointer to dynamic array oevice_} Device ports permitting 10

count
[out scalar] Number of ports returned

RETURN VALUE

KERN_SUCCESS
List returned

KERN_INVALID_ARGUMENT
threadis invalid

KERN_RESOURCE_SHORTAGE
Insufficient kernel memory to return list

318 Mach 3 Kernel Interfaces

i386_io_port_list

RELATED INFORMATION
Functions:i386_io_port_add i386_io_port_remove

Mach 3 Kernel Interfaces 319

Intel 386 Support

1386 _io_port_remove

Function — Disable |0 instructions against a device

LIBRARY

libmach_sa.alibmach.a

#include smach/i386/mach_i386.h

SYNOPSIS
kern_return_t386_io_port_remove
(mach_port_t thread,
mach_port_t device)

DESCRIPTION

The i386_io_port_remove function removes the specified device from the
thread’s 10 permission bitmap, thereby prohibiting 10 instructions being execut-
ed against the device.

PARAMETERS

thread
[in scalar] Thread whose permission bitmap is to be cleared

device
[in scalar] Device whose permission is to be revoked

RETURN VALUE

KERN_SUCCESS
Permission removed

KERN_INVALID_ARGUMENT
deviceor threadwas invalid

RELATED INFORMATION
Functionsi386_io_port_add i386_io_port_list

320 Mach 3 Kernel Interfaces

i386_set_|dt

1386_set_Idt

Function — Set per-thread segment descriptors

LIBRARY
libmach_sa.g libmach.a

#include smach/i386/mach_i386.h

SYNOPSIS

[1] structdescriptor

[2] {

[3] unsigned int low_word

[4] unsigned int high_word

[51 %

[6] typedef struct descriptor descriptor_t;

[7] typedef struct descriptor* descriptor_list_t;

kern_return_t386_set_Idt

(mach_port_t thread,
int first_selector
descriptor_list_t desc_list
mach_msg_type_number_t count)

DESCRIPTION

Thei386_set_ldtfunction allows a thread to have a private local descriptor ta-
ble (LDT) which allows its local segments to map various ranges of its address
space.

PARAMETERS

thread
[in scalar] Thread whose segment descriptors are to be set

first_selector
[in scalar] Selector value (segment register value) corresponding to the
first segment whose descriptor is to be set

desc_list
[pointer to in array oflescriptor_} Array of segment descriptors. The
following forms are permitted:

Empty descriptor. The ACC_P flag (segment present) may or may
not be set.

ACC_CALL_GATE — Converted into a system call gate. The
ACC_P flag must be set.

Mach 3 Kernel Interfaces 321

Intel 386 Support

All other descriptors must have both the ACC_P flag set and specify
user mode access (ACC_PL_U).
ACC_DATA
ACC_DATA W
ACC_DATA E
ACC_DATA_EW
ACC_CODE
ACC_CODE_R
ACC _CODE_C
ACC_CODE_CR
ACC_CALL_GATE_16
ACC_CALL_GATE

count
[in scalar] Number of descriptors to be set

RETURN VALUE

KERN_SUCCESS
Descriptors set

KERN_INVALID_ARGUMENT
threadis invalid, the selector values are out of range or a segment de-
scriptor is invalid

RELATED INFORMATION
Functionsi386_get_Idt

322 Mach 3 Kernel Interfaces

APPENDIX D Data Structures

This appendix discusses the specifics of the various structures used as a part of the ker-
nel’s various interfaces. This appendix does not discuss all of the various data types used
by the kernel’s interfaces, only the fields of the various structures used.

Mach 3 Kernel Interfaces 323

Data Structures

host_basic_info

Structure — Defines basic information about a host

SYNOPSIS
[1] structhost_basic_info
(2] {
[3] int max_cpus
[4] int avail_cpus
[5] vm_size_t memory_size
[6] cpu_type_t cpu_type
[7] cpu_subtype_t cpu_subtype
8] X
[9] typedef struct host_basic_info host_basic_info_data i
[10] typedef struct host_basic_info* host_basic_info_t
DESCRIPTION
The host_basic_infostructure defines the basic information available about a
host.
FIELDS
max_cpus
Maximum possible CPUs for which kernel is configured
avail_cpus

Number of CPUs now available

memory_size
Size of memory, in bytes

cpu_type
CPU type

cpu_subtype
CPU sub-type

RELATED INFORMATION

Functions:host_info.

Data structureshost_load_infq host_sched_info.

324 Mach 3 Kernel Interfaces

host_load_info

host_load_info

Structure — Defines load information about a host

SYNOPSIS
[1] #defineCPU_STATE_USER 0
[2] #defineCPU_STATE_SYSTEM 1
[3] #defineCPU_STATE_IDLE 2
[4] structhost_load_info
[5] {
[6] long avenrur3];
[7] long mach_factof3];
8 %
[9] typedef struct host_load_info host_load_info_data_t
[10] typedef struct host load_info* host_load_info_t
DESCRIPTION

The host_load_infostructure defines the loading information available about a
host. The information returned is exponential averages over three periods of
time: 5, 30 and 60 seconds.

FIELDS

avenrun
load average—average number of runnable processes divided by num-
ber of CPUs

mach_factor

The processing resources available to a new thread—the number of
CPUs divided by (1 + the number of threads)

RELATED INFORMATION
Functions:host_info.

Data structureshost_basic_info host_sched_info.

Mach 3 Kernel Interfaces 325

Data Structures

host_sched_info

Structure — Defines scheduling information about a host

SYNOPSIS

[1] structhost_sched_info

(2] {

[3] int min_timeout

[4] int min_quantum

[5] %

[6] typedef struct host_sched_info host_sched_info_data ;t

[7] typedef struct host_sched_info* host_sched_info i
DESCRIPTION

The host_sched_infostructure defines the scheduling information available
about a host.

FIELDS

min_timeout
Minimum time-out, in milliseconds

min_quantum
Minimum quantum, in milliseconds

RELATED INFORMATION

Functions:host_info.

Data structureshost_basic_info host_load_info.

326 Mach 3 Kernel Interfaces

mach_msg_header

mach_msg_header

Structure — Defines the header portion for messages

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_bits t msgh_bits
[4] mach_msg_size_t msgh_size
[5] mach_port_t msgh_remote_part
[6] mach_port_t msgh_local_port
[7] mach_port_seqno_t msgh_seqgno
[8] mach_msg_id_t msgh_id

[9] } mach_msg_header ;t

DESCRIPTION

A Mach message consists of a fixed size message headachamsg_head-

er_t, followed by zero or more data items. Data items are typed. Each item has
a type descriptor followed by the actual data (or an address of the data, for out-
of-line memory regions).

There are two forms of type descriptorspnach_msg_type_tand amach_ms-
g_type_long_t Themach_msg_type_long_type descriptor allows larger val-
ues for these fields. Thasgtl_headefield in the long descriptor is only used
for its in-line, long-form, and de-allocate bits.

FIELDS

msgh_bits
This field specifies the following properties of the message:

MACH_MSGH_BITS_REMOTE_MASK
Encodesmach_msg_type name_tvalues that specify the
port rights in themsgh_remote_porfield. The value must
specify a send or send-once right for the destination of the
message.

MACH_MSGH_BITS_LOCAL_MASK
Encodesmach_msg_type name_tvalues that specify the
port rights in themsgh_local_porfield. If the value doesn't
specify a send or send-once right for the message’s reply port,
it must be zero anohsgh_local_portmust be MACH_PORT _-
NULL.

Mach 3 Kernel Interfaces 327

Data Structures

MACH_MSGH_BITS_COMPLEX
The complex bit must be specified if the message body con-
tains port rights or out-of-line memory regions. If it is not
specified, then the message body carries no port rights or
memory, no matter what the type descriptors may seem to in-
dicate.

MACH_MSGH_BITS_REMOTHSits)
This macro returns the appropriatech_msg_type_name_t
values, given asgh_bitssalue.

MACH_MSGH_BITS_LOCALpits)
This macro returns the appropriatach_msg_type_name_t
values, given asgh_bitssalue.

MACH_MSGH_BITS ¢emote local)
This macro constructs a value fonsgh_bits given two
mach_msg_type name_values.

msgh_size

In the header of a received message, this field contains the message's
size. The message size, a byte quantity, includes the message header,
type descriptors, and in-line data. For out-of-line memory regions, the
message size includes the size of the in-line address, not the size of the
actual data region. There are no arbitrary limits on the size of a Mach
message, the number of data items in a message, or the size of the data
items.

msgh_remote_port
When sending, specifies the destination port of the message. The field
must carry a legitimate send or send-once right for a port. When re-
ceived, this field is swapped withsgh_local_port

msgh_local_port
When sending, specifies an auxiliary port right, which is conventional-
ly used as a reply port by the recipient of the message. The field must
carry a send right, a send-once right, MACH_PORT_NULL, or
MACH_PORT_DEAD. When received, this field is swapped wit
gh_remote_port

msgh_seqgno
The sequence number of this message relative to the port from which it
is received. This field is ignored on sent messages.

msgh_id
Not set or read by themach_msgcall. The conventional meanings is
to convey an operation or function id.

328

Mach 3 Kernel Interfaces

mach_msg_header

NOTES

Simple messages are provided to handle in-line data. The sender copies the in-
line data into the message structure, and the receiver usually copies it out.

Non-simple messages are provided to handle out-of-line data. Out-of-line data
allows for the sending of port information or data blocks that are very large or
of variable size. The kernel maps out-of-line data from the address space of the
sender to the address space of the receiver. The kernel copies the data only if the
sender or receiver subsequently modifies it. This is an example of copy-on-write
data sharing.

RELATED INFORMATION
Functionsmach_msg mach_msg_receivemach_msg_send

Data Structuresnach_msg_typemach_msg_type_long

Mach 3 Kernel Interfaces 329

Data Structures

mach_msg_type

Structure — Defines the data descriptor for long data items in messages

SYNOPSIS
[1] typedef struct
(2] {
[3] unsigned int msgt_names,
[4] msgt_size8,
[5] msgt_numberl2,
[6] msgt_inline 1,
[7] msgt_longform1,
[8] msgt_deallocatel,
[9] msgt_unusedL,;

[10] } mach_msg_type it

DESCRIPTION

Each data item in a MACH IPC message has a type descriptaGta msg_ty-
pe_t or amach_msg_type long_.tThemach_msg_type_long_type descrip-
tor allows larger values for these fields.

FIELDS

msgt_name
Specifies the data's type. The following types are predefined:

MACH_MSG_TYPE_UNSTRUCTURED
un-interpreted data (32 bits)

MACH_MSG_TYPE_BIT
single bit

MACH_MSG_TYPE_BOOLEAN
boolean value (32 bits)

MACH_MSG_TYPE_INTEGER_16
16 bit integer

MACH_MSG_TYPE_INTEGER_32
32 bit integer

MACH_MSG_TYPE_CHAR
single character

MACH_MSG_TYPE_BYTE
8-bit byte

330 Mach 3 Kernel Interfaces

mach_msg_type

MACH_MSG_TYPE_INTEGER_8
8-bit integer

MACH_MSG_TYPE_REAL
floating value (32 bits)

MACH_MSG_TYPE_STRING
null terminated

MACH_MSG_TYPE_STRING_C
null terminated

MACH_MSG_TYPE_PORT_NAME
type of mach_port_t. This is the type of the name for a port,
not the type to specify if a port right is to be specified.

MACH_MSG_TYPE_MOVE_RECEIVE
move the name receive right

MACH_MSG_TYPE_MOVE_SEND
move the named send right

MACH_MSG_TYPE_MOVE_SEND_ONCE
move the named send-once right

MACH_MSG_TYPE_COPY_SEND
make a copy of the named send right

MACH_MSG_TYPE_MAKE_SEND
make a send right from the named receive right

MACH_MSG_TYPE_MAKE_SEND_ONCE
make a send-once right from the named send or receive right

The last six types specify port rights, and receive special treatment.
The type MACH_MSG_TYPE_PORT_NAME describes port right
names, when no rights are being transferred, but just names. For this
purpose, it should be used in preference to MACH_MSG_TYPE_IN-
TEGER_32.

msgt_size
Specifies the size of each datum, in bits. For examplendigg_sizef
MACH_MSG_TYPE_INTEGER_32 data is 32.

msgt_number
Specifies how many data elements comprise the data item. Zero is a le-
gitimate number. The total length specified by a type descriptorss (
gt_size* msgt_numbér rounded up to an integral number of bytes. In-
line data is then padded to an integral number of long-words. This en-

Mach 3 Kernel Interfaces 331

Data Structures

sures that type descriptors always start on long-word boundaries. It im-
plies that message sizes are always an integral multiple of a long-
word’s size.

msgt_inline
When FALSE, specifies that the data actually resides in an out-of-line
region. The address of the data region follows the type descriptor in the
message body. Thasgt namemsgt_sizeandmsgt _numbefields de-
scribe the data region, not the address.

msgt_longform
Specifies, when TRUE, that this type descriptor isnach_msg_-
type_long_tinstead of anach_msg_type t.

msgt_deallocate
Used with out-of-line regions. When TRUE, it specifies the data region
should be de-allocated from the sender’s address space (asvuhwith
deallocate when the message is sent.

msgt_unused
Not used, should be zero.

RELATED INFORMATION

Functionsmach_msg mach_msg_receivemach_msg_send

Data Structuresnach_msg_heademach_msg_type_long

332

Mach 3 Kernel Interfaces

mach_msg_type_long

mach_msg_type long

Structure — Defines the data descriptor for long data items in messages

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_type t msgtl_header
[4] unsigned short msgtl_namg
[5] unsigned short msgtl_size
[6] unsigned int msgtl_number

[71 } mach_msg_type_long ;t

DESCRIPTION

Each data item has a type descriptomach_msg_type_tor amach_msg_-
type_long_t Themach_msg_type long_type descriptor allows larger values
for these fields. Thesgtl_headefield in the long descriptor is only used for its
in-line, long-form, and de-allocate bits.

FIELDS

msgtl_header
A header in common witlmach_msg_type_t When themsgt_long-
form bit in the header is TRUE, this type descriptor imach_msg_-
type_long t instead of a mach_msg_type t The msgt name
msgt_sizeandmsgt_numbefields should be zero. Insteadach_msg
uses the followingmsgtl_namemsgtl_sizeandmsgtl_numbefields.

msgtl_name
Specifies the data's type. The defined values are the same as those for
mach_msg_type

msgtl_size
Specifies the size of each datum, in bits. For examplensigd_sizeof
MACH_MSG_TYPE_INTEGER_32 data is 32.

msgtl_number
Specifies how many data elements comprise the data item. Zero is a le-
gitimate number. The total length specified by a type descriptorsis (
gtl_size* msgtl_numbér rounded up to an integral number of bytes.
In-line data is then padded to an integral number of long-words. This
ensures that type descriptors always start on long-word boundaries. It
implies that message sizes are always an integral multiple of a long-
word’s size.

Mach 3 Kernel Interfaces 333

Data Structures

RELATED INFORMATION
Functionsmach_msg mach_msg_receivemach_msg_send

Data Structuresnach_msg_headegmach_msg_type

334 Mach 3 Kernel Interfaces

mach_port_status

mach_port_status

Structure — Defines information for a port

SYNOPSIS
[1] structmach_port_status
[2] {
[3] mach_port_t
[4] mach_port_seqno_t
[5] mach_port_mscount_t
[6] mach_port_msgcount_t
[7] mach_port_msgcount_t
[8] mach_port_rights_t
[9] boolean_t
[10] boolean_t
[11] boolean_t
(12] %
[13] typedef struct mach_port_status

DESCRIPTION

Themach_port_statusstructure defines information about a port.

FIELDS

mps_pset
Containing port set

mps_seqno

mps_pset
mps_seqno
mps_mscount
mps_glimit
mps_msgcount
mps_sorights
mps_srights
mps_pdrequest
mps_nsrequest

mach_port_status t

Current sequence number for the port.

mps_mscount
Make-send count

mps_glimit
Queue limit

mps_msgcount
Number in the queue

mps_sorights

How many send-once rights

mps_srights
True if send rights exist

Mach 3 Kernel Interfaces

335

Data Structures

mps_pdrequest
True if there is a port-deleted requested

mps_nsrequest
True if no-senders requested

RELATED INFORMATION
Functionsmach_port_get_receive_status.

336 Mach 3 Kernel Interfaces

mapped_time_value

mapped_time_value

Structure — Defines format of kernel maintained time in the mapped clock de-

vice

SYNOPSIS

[1] structmapped time_value

[2] {

[3] long seconds

[4] long microseconds

[5] long check_secongls

[6] %

[7] typedef struct mapped_time_value mapped_time_value_t
DESCRIPTION

The mapped_time_valuestructure defines the format of the current-time struc-
ture maintained by the kernel and visible by mappdeyice_map the “time”
pseudo-device. The data in this structure is updated at every clock interrupt. It
contains the same value that would be returnedolsy get time

FIELDS

seconds
Seconds since system initialization

microseconds
Microseconds in the current second

check_seconds
A field used to synchronize with the kernel's setting of the time.

NOTES

Because of the race between the referencing of these multiple fields and the ker-
nel’'s setting them, they should be referenced as follows:

[1] do

[2] {

[3] secs= mtime — seconds

[4] usecs= mtime — microseconds

[5] } while (secs&= mtime - check_secondis

RELATED INFORMATION

Functions:device_map host_adjust_time host_get_time host_set_time.

Mach 3 Kernel Interfaces 337

Data Structures

processor_basic_info

Structure — Defines the basic information about a processor.

SYNOPSIS
[1] structprocessor_basic_info
2] {
[3] cpu_type_t cpu_type
[4] cpu_subtype_t cpu_subtype
[5] boolean_t running
[6] int slot_num
[7] boolean_t is_master
8 %

[9] typedef struct processor_basic_info* processor_basic_info_;t

DESCRIPTION

The processor_basic_infestructure defines the information available about a
processor slot.

FIELDS

cpu_type
Type of CPU

cpu_subtype
Sub-type of CPU

running
True if the CPU is running

slot_num
Slot number of the CPU

is_master
True if this is the master processor

RELATED INFORMATION

Functionsprocessor_infa

338

Mach 3 Kernel Interfaces

processor_set_basic_info

processor_set_basic_info

Structure — Defines the basic information about a processor set.

SYNOPSIS
[1] structprocessor_set basic_info
2] {
[3] int processor_count
[4] int task_count
[5] int thread_count
[6] int load_average
[7] int mach_factor
8 %

[9] typedef struct processor_set basic_info*processor_set basic_info;t

DESCRIPTION

The processor_set_basic_infatructure defines the basic information available
about a processor set.

FIELDS

processor_count
Number of processors in this set

task_count
Number of tasks currently assigned to this processor set

thread_count
Number of threads currently assigned to this processor set

load_average
Scaled

mach_factor
Scaled

RELATED INFORMATION
Functionsjprocessor_set_info

Data Structuregprocessor_set_sched_info

Mach 3 Kernel Interfaces 339

Data Structures

processor_set sched_info

Structure — Defines the scheduling information about a processor set.

SYNOPSIS
[1] structprocessor_set_sched_info
(2] {
[3] int policies
[4] int max_priority;
[5] X

[6] typedef struct processor_set_sched_infoprocessor_set sched_info; t

DESCRIPTION

The processor_set_sched_infetructure defines the global scheduling informa-
tion available about a processor set.

FIELDS

policies
Allowed policies

max_priority
Maximum scheduling priority for new threads

RELATED INFORMATION

Functionsprocessor_set_info

Data Structuregrocessor_set_basic_info

340 Mach 3 Kernel Interfaces

task_basic_info

task_basic_info

Structure — Defines basic information for tasks

SYNOPSIS
[1] structtask_basic_info
[2] {
[3] int suspend_count
[4] int base_priority
[5] vm_size_t virtual_size
[6] vm_size t resident_size
[7] time_value_t user_time
[8] time_value_t system_time
©l %
[10] typedef struct task basic_info* task_basic_info_t
DESCRIPTION

Thetask_basic_infostructure defines the basic information array for tasks. The
task_info function returns this array for a specified task.

FIELDS

suspend_count
The current suspend count for the task.

base_priority
The base scheduling priority for the task.

virtual_size
The number of virtual pages for the task.

resident_size
The number of resident pages for the task

user_time
The total user run time for terminated threads within the task.

system_time
The total system run time for terminated threads within the task.

RELATED INFORMATION
Functionstask_info.

Data Structuredask_thread_times_infa

Mach 3 Kernel Interfaces 341

Data Structures

task_thread_times_info

Structure — Defines thread execution times information for tasks

SYNOPSIS
[1] structtask_thread_times_info
[2] {
[3] time_value_t user_time
[4] time_value_t system_time
[5] %

[6] typedef struct task_thread_times_info* task_thread_times_info_t

DESCRIPTION

The task_thread_times_info structure defines thread execution time statistics
for tasks. Thetask_info function returns these times for a specified task. The
thread_info function returns this information for a specific thread.

FIELDS

user_time
Total user run time for live threads.

system_time
Total system run time for live threads.

RELATED INFORMATION

Functionstask_info.

Data Structuredask_basic_info,thread_info.

342 Mach 3 Kernel Interfaces

thread_basic_info

thread_basic_info

Structure — Defines basic information for threads

SYNOPSIS
[1] structthread_basic_info
[2] {
[3] time_value_t user_time
[4] time_value_t system_time
[5] int Cpu_usage
[6] int base_priority
[7] int cur_priority;
[8] int run_state
[9] int flags
[10] int suspend_count
[11] long sleep_time
[12] };
[13] typedef struct thread_basic_info* thread_basic_info _t;
DESCRIPTION

Thethread_basic_infostructure defines the basic information array for threads.
Thethread_info function returns this array for a specified thread.

FIELDS

user_time
The total user run time for the thread.

system_time
The total system run time for the thread.

cpu_usage
Scaled CPU usage percentage for the thread.

base_priority
The base scheduling priority for the thread.

cur_priority
The current scheduling priority for the thread.

run_state
The thread’s run state. Possible values are:

TH_STATE_RUNNING
The thread is running normally.

Mach 3 Kernel Interfaces 343

Data Structures

TH_STATE_STOPPED
The thread is stopped.

TH_STATE_WAITING
The thread is waiting normally.

TH_STATE_UNINTERRUPTIBLE
The thread is in an un-interruptible wait state.

TH_STATE_HALTED
The thread is halted at a clean point.

flags
Swapl/idle flags for the thread. Possible values are:

TH_FLAGS_SWAPPED
The thread is swapped out.

TH_FLAGS_IDLE
The thread is an idle thread.

suspend_count
The current suspend count for the thread.

sleep_time
The number of seconds that the thread has been sleeping.

RELATED INFORMATION
Functionsthread_info.

Data Structureghread_sched_info

344 Mach 3 Kernel Interfaces

thread_sched_info

thread_sched_info

Structure — Defines scheduling information for threads

SYNOPSIS

[1] structthread_sched_info

[2] {

[3] int policy;

[4] int datg

[5] int base_priority

[6] int max_priority,

[7] int cur_priority;

[8] boolean_t depressed

[9] int depress_priority

[10] };

[11] typedef struct thread_sched_info* thread_sched_info_t
DESCRIPTION

The thread_sched_infostructure defines the scheduling information array for

threads. Theéhread_info function returns this array for a specified thread.

FIELDS

policy
Scheduling policy in effect

data
Associated data for the scheduling policy

base_priority
Base scheduling priority

max_priority
Maximum scheduling priority

cur_priority
Current scheduling priority

depressed
True if scheduling priority is depressed

depress_priority
Scheduling priority from which depressed

Mach 3 Kernel Interfaces 345

Data Structures

RELATED INFORMATION
Functionsthread_info.

Data Structureghread_basic_infa

346 Mach 3 Kernel Interfaces

time_value

time_value

Structure — Defines format of system time values

SYNOPSIS

[1] structtime_value

[2] {

[3] long seconds

[4] long microseconds

[51 %

[6] typedef struct time_value time_value_t
DESCRIPTION

Thetime_value structure defines the format of the time structure supplied to or
returned from the kernel.

FIELDS

seconds
Seconds since system initialization

microseconds
Microseconds in the current second

RELATED INFORMATION
Functionshost_adjust_time host_get_time host_set_time.

Mach 3 Kernel Interfaces 347

Data Structures

vm_ statistics

Structure — Defines statistics for the kernel’s use of virtual memory

SYNOPSIS
[1] structvm_statistics
(2] {
[3] long
[4] long
[5] long
[6] long
[7] long
[8] long
[9] long
[10] long
[11] long
[12] long
[13] long
[14] long
[15] long
[16] };

[17] typedef struct vm_statistics*

DESCRIPTION

pagesize
free_count
active_count
inactive_count
wire_counf
zero_fill_count
reactivations
pageins
pageouts
faults
cow_faults
lookups

hits;

vm_statistics_t

Thevm_statisticsstructure defines the statistics available on the kernel’s use of
virtual memory. The statistics record virtual memory usage since the kernel was

booted.

You can also finghagesizeby using the global variablen_page_sizeThis vari-
able is set at task initialization and remains constant for the life of the task.

For related information for a specific task, seetds& basic_infostructure.

FIELDS

pagesize

The virtual page size, in bytes.

free_count

The total number of free pages in the system.

active_count

The total number of pages currently in use and pageable.

inactive_count

The number of inactive pages.

348 Mach 3 Kernel Interfaces

vm_statistics

wire_count
The number of pages that are wired in memory and cannot be paged
out.

zero_fill_count
The number of zero-fill pages.

reactivations
The number of reactivated pages.

pageins
The number of requests for pages from a pager (such as the i-node pag-
er).

pageouts
The number of pages that have been paged out.

faults
The number of times them_fault routine has been called.

cow_faults
The number of copy-on-write faults.

lookups
The number of object cache lookups.

hits
The number of object cache hits.

RELATED INFORMATION
Functionstask_info, vm_statistics

Data Structuredask_basic_info

Mach 3 Kernel Interfaces 349

Data Structures

350 Mach 3 Kernel Interfaces

aprEnDIX E Error Return Values

This appendix lists the various kernel return values.

An error code has the following format:

system code (6 bits). Thegr_get_system(err) macro extracts this field.
subsystem code (12 bits). Tee_get_sub(err) macro extracts this field.
error code (14 bits). Therr_get_code(err) macro extracts this field.

The various system codes are:

err_kern—kernel

err_us— user space library
err_server— user space servers
err_mach_ipc— Mach-IPC errors
err_local— user defined errors

A typical user error code definition would be:
#define SOMETHING_WRONG@rr_local |err_sub (13) | 1

D_ALREADY_OPEN
Exclusive-use device already open

D_DEVICE_DOWN
Device has been shut down

Mach 3 Kernel Interfaces 351

Error Return Values

D_INVALID_OPERATION
Bad operation for device

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid 10 size

D 10_ERROR
Hardware 10 error

D_10_QUEUED
IO queued - do not return result

D_NO_MEMORY
Memory allocation failure

D_NO_SUCH_DEVICE
No such device

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

D_SUCCESS

Normal device return

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

EML_BAD _ CNT
Invalid syscall number

352 Mach 3 Kernel Interfaces

EML_BAD_ TASK
Null task

KERN_ABORTED

The operation was aborted. IPC code will catch this and reflect it as a message
error.

KERN_FAILURE
The function could not be performed; a catch-all.

KERN_INVALID_ADDRESS
Specified address is not currently valid.

KERN_INVALID_ARGUMENT

The function requested was not applicable to this type of argument, or an argu-
ment

KERN_INVALID_CAPABILITY
The supplied (port) capability is improper.

KERN_INVALID_HOST
Target host isn’t actually a host.

KERN_INVALID NAME
The name doesn’t denote a right in the task.

KERN_INVALID_RIGHT
The name denotes a right, but not an appropriate right.

KERN_INVALID_TASK
Target task isn’t an active task.

KERN_INVALID_ VALUE
A blatant range error.

Mach 3 Kernel Interfaces 353

Error Return Values

KERN_MEMORY_ERROR

During a page fault, the memory object indicated that the data could not be re-
turned. This failure may be temporary; future attempts to access this same data
may succeed, as defined by the memory object.

KERN_MEMORY_FAILURE

During a page fault, the target address refers to a memory object that has been
destroyed. This failure is permanent.

KERN_NAME_EXISTS
The name already denotes a right in the task.

KERN_NO_ACCESS
Bogus access restriction.

KERN_NO_SPACE

The address range specified is already in use, or no address range of the size
specified could be found.

KERN_NOT _IN_SET
The receive right is not a member of a port set.

KERN_NOT_RECEIVER
The task in question does not hold receive rights for the port argument.

KERN_PROTECTION_FAILURE
Specified memory is valid, but does not permit the required forms of access.

KERN_RESOURCE_SHORTAGE

A system resource could not be allocated to fulfill this request. This failure may
not be permanent.

KERN_RIGHT_EXISTS
The task already has send or receive rights for the port under another name.

KERN_SUCCESS
Successful completion

354 Mach 3 Kernel Interfaces

KERN_UREFS_OVERFLOW
Operation would overflow limit on user-references.

MACH_MSG_IPC_KERNEL
(mask bit) Kernel resource shortage handling an IPC capability.

MACH_MSG_IPC_SPACE
(mask bit) No room in IPC name space for another capability name.

MACH_MSG_SUCCESS
Normal IPC success.

MACH_MSG_VM_KERNEL
(mask bit) Kernel resource shortage handling out-of-line memory.

MACH_MSG_VM_SPACE
(mask bit) No room in VM address space for out-of-line memory.

MACH_RCV_BODY_ERROR
Error receiving message body. See special bits.

MACH_RCV_HEADER_ERROR
Error receiving message header. See special bits.

MACH_RCV_IN_SET
Port is a member of a port set.

MACH_RCV_INTERRUPTED
Software interrupt.

MACH_RCV_INVALID DATA
Bogus message buffer for in-line data.

MACH_RCV_INVALID NAME
Bogus name for receive port/port-set.

Mach 3 Kernel Interfaces 355

Error Return Values

MACH_RCV_INVALID_NOTIFY
Bogus notify port argument.

MACH_RCV_PORT_CHANGED
Port moved into a set during the receive.

MACH_RCV_PORT_DIED
Port/set was sent away/died during receive.

MACH_RCV_TIMED_OUT
Didn’t get a message within the time-out value.

MACH_RCV_TOO_LARGE
Message buffer is not large enough for in-line data.

MACH_SEND_INTERRUPTED
Software interrupt.

MACH_SEND _INVALID_DATA
Bogus in-line data.

MACH_SEND_INVALID_DEST
Bogus destination port.

MACH_SEND_INVALID_HEADER
A field in the header had a bad value.

MACH_SEND_INVALID_MEMORY
Invalid out-of-line memory address.

MACH_SEND_INVALID_NOTIFY
Bogus notify port argument.

MACH_SEND_INVALID_REPLY
Bogus reply port.

356 Mach 3 Kernel Interfaces

MACH_SEND _ INVALID_RIGHT
Bogus port rights in the message body.

MACH_SEND _ INVALID _TYPE
Invalid msg-type specification.

MACH_SEND MSG_TOO_SMALL
Data doesn’t contain a complete message.

MACH_SEND NO BUFFER
No message buffer is available.

MACH_SEND_NO_NOTIFY
Resource shortage; can’t request msg-accepted notification.

MACH_SEND_ NOTIFY_IN_PROGRESS
Msg-accepted notification already pending.

MACH_SEND_ TIMED_OUT
Message not sent before time-out expired.

MACH_SEND WILL_NOTIFY
Msg-accepted notification will be generated.

MIG_ARRAY_TOO_LARGE
User specified array not large enough to hold returned array

MIG_BAD ARGUMENTS
Server found wrong arguments

MIG_BAD ID
Bad message ID

MIG_EXCEPTION
Server raised exception

Mach 3 Kernel Interfaces 357

Error Return Values

MIG_NO_REPLY
Server shouldn’t reply

MIG_REMOTE_ERROR
Server detected error

MIG_REPLY_MISMATCH
Wrong return message 1D

MIG_SERVER_DIED

Server no longer exists

MIG_TYPE_ERROR
Type check failure

358 Mach 3 Kernel Interfaces

Index

APPENDIX F
Data Structures 323 device_open_request 265
Device Interface 259 device read 268
Error Return Values 351 device_read_inband............. 270
External Memory Management Inter- device_read_request............. 268
face 99 device_read_request_inband 270
HostInterface 213 device_reply server............. 282
IPClInterface.................... 5 device_set filter................ 272
Index 359 device_set status............... 276
Intel 386 Support. 311 device_write................... 277
Interface Descriptions. 1 device_write_inband 279
Interface Types 2 device_write_request............ 277
Introduction. 1 device_write_request_inband 279
MIG Server Routines 281 do_mach_notify_dead_name. 24
Multicomputer Support. 299 do_mach_notify_msg_accepted. 26
Parameter Types 3 do_mach_notify no_senders....... 28
Port Manipulation Interface 23 do_mach_notify_port_deleted. 30
Processor Interface 223 do_mach_notify_port_destroyed. . .. 32
SpecialForms 3 do_mach_notify_send once 34
Task Interface 191 do_segnos_mach_notify_dead_name 24
Thread Interface 151 do_segnos_mach_notify_msg_accepted
Virtual Memory Interface 73 26
catch_exception_raise........... 152 do_segnos_mach_notify_no_senders 28
default_pager_info 100 do_seqgnos_mach_notify_port_deleted .
default_pager_object_create. 101 30
device close 260 do_segnos_mach_notify port_destroye
device_get_status 261 d..... .. 32
device map................... 263 do_segnos_mach_notify_send_once . 34
device_ open 265 ds_device_open_reply........... 265

Mach 3 Kernel Interfaces

359

Index

ds_device _read _reply 268
ds_device_read_reply_inband 270
ds_device_write_reply........... 277
ds_device_write_reply_inband279
evc wait. 155
EXC_SeIVel ...t 284
exception_raise 157
host_adjust time 214
host basic_info 324
host_get boot info 215
host get time.................. 216
host info 217
host_kernel_version............. 219
host load info................. 325
host_processor_set_priv.......... 224
host_processor sets............. 225
host processors 227
host reboot. 220
host sched info................ 326
host set time.................. 221
i386_get Idt................... 314
i386 io port add............... 316
i386 _io_port list............... 318
i386_io_port_remove............ 320
i386_set Idt................... 321
mach_host self 222
mach_ msg 6
mach_msg_header.............. 327
mach_msg_receive. 21
mach_msg send................. 22
mach_msg type................ 330
mach_msg_type long 333
mach_port_allocate 35
mach_port_allocate_name......... 37
mach_port_deallocate 39
mach_port_destroy. 40
mach_port_extract_right 42
mach_port_get_receive_status. 44
mach_port get refs.............. 45
mach_port_get_set status 47
mach_port_insert_right 49
mach_port_ mod_refs............. 51
mach_port_move_member 53
mach_port names 55
mach_port_rename. 57
mach_port_request_notification59
mach_port_set_ mscount 62
mach_port_set_glimit 63
mach_port_set_seqno............. 65
mach_port_status. 335
mach_port type 66
mach_ports_lookup 68

mach_ports_register 69
mach_reply port................. 71

mach_sample task 192
mach_sample _thread 159
mach_task self................. 194
mach_thread_self 161
mapped_time_value 337

memory_object_change_attributes. .103
memory_object_change _completed.105

memory_object_copy............ 107
memory_object create 110
memory_object_data_error. 113
memory_object_data_initialize. 115
memory_object_data_provided117
memory_object_data_request. 119
memory_object_data_return. 121
memory_object_data_supply 123
memory_object_data_unavailable . .126
memory_object_data_unlock 128
memory_object_data_write 130
memory_object_default_server286
memory_object_destroy.......... 132
memory_object_get_attributes. 133
memory_object_init 135
memory_object_lock_completed . . .137
memory_object_lock request. 139
memory_object ready 142
memory_object_server........... 288
memory_object_set_attributes 144
memory_object_supply_completed .146
memory_object_terminate 148
norma_get_device port 300
norma_get_host_paging_port. 300
norma_get _host port 301
norma_get_host_priv_port 301
norma_get_nameserver_port 301
norma_get_special_port.......... 300
norma_port_location_hint. 303
norma_set_device_port. 304
norma_set_host_paging_port...... 304
norma_set host port. 305
norma_set_host_priv_port 305
norma_set_nameserver_port. 305
norma_set_special_port 304
norma_task create 307
notify server................... 290
processor_assign. 228
processor_basic_info 338
processor_control 230
processor_exit.................. 232
processor_get_assignment 234
processor_info. 235

360

Mach 3 Kernel Interfaces

processor_set_basic_info 339 task _set_emulation_vector. 206
processor_set create............ 237 task_set_exception_port.......... 208
processor_set default 239 task set kernel port 208
processor_set _destroy........... 240 task_set special_port............ 208
processor_set info 241 task suspend 210
processor_set_max_priority 243 task terminate 211
processor_set_policy disable 245 task _thread_times_info 342
processor_set_policy_enable 247 task threads................... 212
processor_set _sched_info........ 340 thread abort................... 164
processor_set tasks............. 248 thread assign.................. 256
processor_set threads........... 249 thread_assign_default 257
processor_start 250 thread_basic_info............... 343
segnos_memory_object_change_compl thread_create 166
eted.................. 105 thread_depress_abort............ 168
seqgnos_memory_object_copy. 108 thread_get_assignment. 258
segnos_memory_object_create.... 110 thread_get exception_port........ 169
seqgnos_memory_object_data_initialize thread_get_kernel_port 169
115 thread_get_special_port.......... 169
segnos_memory_object_data_request . thread_get state................ 171
119 thread_info.................... 173
segnos_memory_object_data return121 thread_max_priority. 175
seqnos_memory_object_data_unlock. . thread_policy 177
128 thread_priority 179
segnos_memory_object_data_write 130 thread_resume 181
segnos_memory_object_default_server thread_sched info 345
292 thread_set_exception_port. 182
segnos_memory_object_init. 136 thread_set_kernel_port........... 182
segnos_memory_object_lock_complete thread_set_special_port.......... 182
d.. 137 thread_set state 184
seqnos_memory_object_server. ... 294 thread suspend................. 186
seqgnos_memory_object_supply_comple thread_switch.................. 187
ted. ... 146 thread_terminate 189
segnos_memory_object_terminate . 148 thread_wire 190
seqgnos_notify_server 296 time value 347
swich. 162 vm_allocate 74
swich_pri..................... 163 VI _COPY. et e eeeeee e e e e 76
task assign 252 vm_deallocate 78
task_assign_default............. 254 vm_inherit 80
task basic_info................ 341 vm_machine_attribute 82
task create.................... 195 vmmap....................... 84
task_get assignment............ 255 vm_ protect..................... 88
task_get bootstrap port 198 wvmread....................... 90
task_get_emulation_vector....... 197 VIN_regioncovviinnn.... 92
task_get exception_port......... 198 vm_set_default._memory_manager . 150
task_get kernel_port............ 198 vm_statistics. 348
task_get special_port........... 198 wvm_statistics. 94
task info..................... 200 VIN_WIrE . . o 95
task priority, 202 vm_write ... 97
task resume................... 204
task_set bootstrap_port 208
task_set child_node 309
task_set emulation 205
Mach 3 Kernel Interfaces 361

Index

362 Mach 3 Kernel Interfaces

